1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

324 7. THE REDUCED DISTANCE


that is,


(7.85) (:r +il) (L-2nr) :S 0.


Now we prove a lemma which describes the limiting behavior of L (q, 7)

as 7-+ O+. We will use it to·estimate the minimal value of 2 ./¥L(·,7) (and

likewise L) over M..

LEMMA 7.47 (L tends to its Euclidean value as 7-+ 0). We have

(7.86) _lim L(q,7) = (dg(O) (p,q))

2
.
T-+0+

Hence L satisfies


lim L (q,^7 ) = 1.

7-+0+ [dg(O) (p, q)]2 I 2y'f


PROOF. We only need to prove the first equality above; the second
equality follows by definition. In Lemma 7.13(i), let r = r2 = 7 and let
'Y : [O, 7] -+ M be a minimal £-geodesic between p and q. We have


d;(o)(P, q) :S e2Co7 ( L(q, 7) + 4n3Co 72)


for any 7 E (0, T). Taking the limit lim 7 ...... o+ of the above inequality, we get


lim7 ...... o+ L ( q, 7) 2: ( d 9 (o) (p, q))

2
.
To see the other direction of the inequality, choosing r2 = 7 in Lemma
7.13(iii), we have


L(q - 7) < --7 4nCo^2 + e 2c 0 - 2^7 d _ (p q)
' - 3 g(T) )

for any 7 E (0, T). Taking 7-+ O+, we get

_lim L (q, 7) :S d;(o) (p, q).
T-+0+

The lemma is proved. D


Next we estimate the minimum value of L (q, 7) - 2n7 over M.

LEMMA 7.48 (Monotonicity and estimate for minM L). Let (Mn,g (r)),

r E [O, T], be a complete solution to the backward Ricci ftow with bounded

sectional curvature,


(i) The function

min (L (q, f) - 2n7)

qEM
is a nonincreasing function of 7.
(ii) For all 7 E (0, T) ,

min L (q, 7) :S 2nf.

qEM
Free download pdf