336
is
- THE REDUCED DISTANCE
d;(O) (p, q)
1; </> (T)-l dT
and the minimizer is given by a minimal geodesic 'Y with speed
I
d"( I. 1 dg(O) (p, q)
dT g(O) = </> (T) 1; </> (T)-l dT.
Caveat: Here we have assumed that the improper integral 1; </> (T)-^1 dT is
convergent.
Hence
inf r VT (1 +
27
R (o)) I dd"( 1
2
dT
} 0 n T g(O)
d;(O) (p, q)
1; T-^112 (1+^2 : R(o)r^1 dT.
Again we make the rationalizing substitution O' = 2y'T to get
-^1 /^2 1 TR 0 d - n d
1
'f ( 2 )-l 2 1
2
..ft 1
0
(^7) +-:;;- ( ) (^7) - R (0) o 2nR (0)- (^1) + 0' (^2) (]'
- v2nR ~ ( )-1/2 0 tan -1 ( 2y!T )
ffnR(O)-^1 ;^2 ·
We conclude
LEMMA 7.67. Let (Mn, g (T)) be an Einstein solution of the backward
Ricci flow on a time interval containing 0 with R (0) > 0. Let p EM be the
basepoint. For all f E (0, oo) , we have
In particular,
(7.105)
L (q f) = nvfr (1-tan-1 ( ..j2f R (0) /n))
' ~-Jr2=f=R=(o=)=/n=-~
. R (0)1/2 d;(O) (p, q)
- ffn tan-^1 ( ..j2f R (0) /n).
_ n·( tan-
1
(..j2fR(O)/n))
£(q,T)=2 l- ..j2TR(O)jn
..j2f R (0) /n d;(O) (p, q)
+ tan-^1 ( ..j2f R (0) /n) 4f.