1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

336


is



  1. THE REDUCED DISTANCE


d;(O) (p, q)
1; </> (T)-l dT
and the minimizer is given by a minimal geodesic 'Y with speed

I

d"( I. 1 dg(O) (p, q)
dT g(O) = </> (T) 1; </> (T)-l dT.

Caveat: Here we have assumed that the improper integral 1; </> (T)-^1 dT is
convergent.
Hence

inf r VT (1 +


27
R (o)) I dd"( 1

2
dT
} 0 n T g(O)
d;(O) (p, q)
1; T-^112 (1+^2 : R(o)r^1 dT.

Again we make the rationalizing substitution O' = 2y'T to get


-^1 /^2 1 TR 0 d - n d

1


'f ( 2 )-l 2 1


2
..ft 1
0

(^7) +-:;;- ( ) (^7) - R (0) o 2nR (0)- (^1) + 0' (^2) (]'





    • v2nR ~ ( )-1/2 0 tan -1 ( 2y!T )




ffnR(O)-^1 ;^2 ·

We conclude

LEMMA 7.67. Let (Mn, g (T)) be an Einstein solution of the backward
Ricci flow on a time interval containing 0 with R (0) > 0. Let p EM be the
basepoint. For all f E (0, oo) , we have

In particular,

(7.105)

L (q f) = nvfr (1-tan-1 ( ..j2f R (0) /n))
' ~-Jr2=f=R=(o=)=/n=-~

. R (0)1/2 d;(O) (p, q)



  • ffn tan-^1 ( ..j2f R (0) /n).


_ n·( tan-


1

(..j2fR(O)/n))

£(q,T)=2 l- ..j2TR(O)jn


..j2f R (0) /n d;(O) (p, q)
+ tan-^1 ( ..j2f R (0) /n) 4f.
Free download pdf