338 7. THE REDUCED DISTANCE
For example, we may take ( M^2 , g ( r)) to be an evolving 2-sphere and
(N^1 ' h ( T)) to be the line to get the cylinder 82 x JR.
EXERCISE 7.69. Assuming the solution (Mn,g (r)) is defined only for
r > 0, rewrite equation (7.106) using the metric g (1) instead of g (0). Show
that this equivalent form is consistent with (7.108).
We follow up on the above exercise by translating time in our Einstein
solution so that R(O)--+ oo in (7.103), and correspondingly, R(r) --+ ~·
Since we then have d;(O) (p, q) --+ 0, we choose to rewrite the formula for £
in terms of d;(r) (p, q) using
d;(O) (p, q) R (f) 1
2 =--= 2.
dg(r) (p, q) R (0) 1 + ; R (0)
In particular, from (7.105), we have
as R (0) --+ oo.
C(q f)-'!!_ (l-tan-
1
( J27R(O)/n))
' - 2 J2rR(O) /n
R (f) d;(r) (p, q) 1
+ -----,---~------,--=:--;:=:::;=
tan-^1 ( )27 R (0) /n) 2.;2njr R (0)
n
-t -
2
EXERCISE 7.70. Let (Mn, g (t)), t E [O, T), be a maximal shrinking
Einstein solution of Ricci fl.ow so that R (t) = 2 (,P-t)" Given any (xi, ti) E
M x (0, T), we define a solution 9i (r) ~ g (ti - r) of the backward Ricci
flow and lex· ?..' t·) i (x, t) = £^9 (i. Xi, o) (x, ti - t). Check that
+ 4(T-t) ~tan-1 ~·
v '!'=ti v '!'=ti
From the above remarks, if~di) (x, t) --+ ~ as i--+ oo if ti--+ T.
7.2. The£ function on a steady gradient Ricci soliton. Consider
a steady gradient Ricci soliton g( r) = <p;go on Mn where Re (go)+ V'V'fo = 0
and I.PT satisfies
(7.109) 01.fJT or ( ) x = - (grad 90 fo) (I.PT (x)),