1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1
8. .C-JACOBI FIELDS AND THE £-EXPONENTIAL MAP 349

we have

D_g,_ (Rc(Y) + \i'yX - I_y)
dr 2T

= (! Re) (Y) + 2 (V' x Re) (Y) - 2 Re^2 (Y)


1

+ 2 \i'y (V' R) - 2 (V'y Re) (X) - Re (\i'y X)


+ R (X, Y) x + (\i'y Re) (X) - (V' Re) (r, 1")
1 1
+-Y--\i'yX.
2T^2 T
This may be rewritten as

D_g,_ (Rc(Y) + \i'yX-I_y)
dr 2T

= (:T Re) (Y) + ~\i'y (V'R)-Rc^2 (Y) + ;T Rc(Y)



  • 2 (V' y Re) ( X) + 2 (V' x Re) (Y) + R ( X, Y) X



  • (Y' Re) ( J{, f) -(V' Re) ( 1;, f)



  • Re (Re (Y) + \i'yX - I_y) -~ (Re (Y) + \i'yX - I_y).
    2T T 2T


Define the matrix Harnack expression

J (Y) ~ - (:T Re) (Y) - ~\i'y (V'R) + Rc^2 (Y) -
2

~ Re (Y)

+ 2 (V'y Re) (X) - 2 (Y' x Re) (Y) - R (X, Y) X


  • (V'Rc) (1,f) + (V'Rc) (1;,f),


so that (note (-(V'Rc) (J(,f) + (V'Rc) (1;,f)) (Y) = O)


(J (Y), Y) = ~H (·X, Y).


Thus we have the following.


LEMMA 7.85. The £-Jacobi equation is equivalent to

(7.124) (Dg, ~ +Re+~) T (Re (Y) + Y'xY - I_y) ~. = -J (Y),


where we have replaced V' y X by V' x Y.

EXERCISE 7.86. Rewrite the above equation using Uhlenbeck's trick.
Free download pdf