- REDUCED VOLUME FOR RICCI FLOW
analysis (see Corollary 15 on p. 110 of [313]), we have
ip(q,T,h) = ~ (cp1(q,T,h)-cp1(q,T,0))
= ~ rh ~ [(T + h)-nf2e-£(q,T+h) dμg(T+h) (q)] dh
h lo ah dμg(T) (q)
(8.31) =h}o^1 rh ( -2(T+h)._ n OT(q,T+h)+R(q,T+h) [)£ )
X (T + h)-~ e-.f.(q,T+h) dμg(T+h) (q) dh.
. dμg(T) (q)
By Lemma 7.59, we have
(
2 ,-, T d 9
2
(0) (p, q) nCof)
(8.32) exp[-£ (q, f)]:::; exp -e-'-'^0 4f + -
3
- ,
397
which decays exponentially quadratically in terms of the distance function.
Also we have e. I..
07 dμ 9 (^7 ) T='f (q) = R (q, f) dμg('f) (q), so that we have the
following bounds for the volume form:
-nColhl < dμg(^7 +h) (q) < nColhl
e - dμg(T) ( ) q - e.
By Lemma 7.59, we also have
/) ( -) 200 r d;('f) (p, q) nCof
.c,qT <e +--
' - 4f 3 '
so it follows from Lemma 7.60(ii) that
I
- [)£ I C1
0
(q,T) _:::;--=--(£(q,f)+Af)
T T=T T
(8.33) -< C1 - (e2C0Td;('f) 4-(p, q) + (nCo 3 + A) f) '
. T T
where A < oo. Hence, for f = T + h, we have
I
--n - -[)£ ( q T -) + R ( q T -) 1--!! T 2e -R.(q ' 7) dμg('f) (q)
2f OT ' ' dμg(T) (q)
(8.34) -< -+-2f n C1 f ( e^200 rd;('f) 4f (p, · q) + (nCo -+ 3 A) T -) +no c,
x T __ !! 2 exp ( -e -20^0 Td;(O) (p, q) nCof) nCol'f-TI
47
+ -
3
- e ·
On the other hand, by the curvature lower bound and the Bishop-Gromov
volume comparison theorem,
(8.35) Vol B 9 ( 7 ) (p, dg(T) (p, q)) :::; C4eC^4 dg(r)(p,q)