1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

404 8. APPLICATIONS OF THE REDUCED DISTANCE


along ')'V, and hence we can use (7.48) to get^4


Iv (7)12 g*(T) < -:--e6(n-l)ec-1/2 + 12 (n ~c - 1) 2 (e6(n-l)e - 1).


Therefore by Holder's inequality,


(t ltv {T)lg,(r) dT)


2

:::; foT' T-l/^2 dT foT' VT li'V (T)l~*(T) dT

:::; 2vfcr 1


71

T-l/^2 JV (T)J~*(T) dT

< ( 2 vfcr)2 (e6(n-l)ec-1/2 + C~c (e6(n-l)e - l)).



  • 12(n-1)^2
    r2
    <-. - 16


We get the last inequality by choosing c1 :::;! such that


4 (e6(n-l)et1/2 + c~.S-


2
(e6(n-l)e _ l)) < _!__

12(n-1)^2 -15


for all t E [O, c1]. Hence


If we also require ci :::; 6 ~, then T^1 :::; cr^2 :::; ~:. Since J Rmg* ( x, T) J :::; r\


for all x E Bg(o)(P,r) and TE [O,r^2 ], we have g(x,T) 2::: ~g(x,O) for
TE [0,T'] and x E Bg(o)(P,r). Hence


dg(O) ('yv (T') ,p) :::; foT' li'v (T)lg(O) dT:::; ~ foT' li'v (T)lg(T) dT

3r r
<-<-. - 8 2

This contradicts /'V ( T^1 ) E 8Bg (O) (p, r /2). The lemma is proved. 0


We now give a proof of Proposition 8.28.

(^4) Note that (3 (£T) =i= 1'V (£T (^2) /4) satisfies ~~ = V. In (7.48) we take Co= nr-; (^1) , T = cr (^2) ,
and C2 = ~~.

Free download pdf