1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

  1. PERELMAN'S FORMALISM IN POTENTIALLY INFINITE DIMENSIONS 421


LEMMA 8.40 (O'Neill). Let X, Y, Z be vector fields on B and let U, V, W
be vector fields on F. Then

(1) R(U, V)W = K(U,V)W - JGJ~ (9F(U, W)V - 9p(V, W)U),

(2) R(X, V)Y = -1(VxG, Y)V = -1Hess 9 (!) (X, Y)V,

(3) R(X, Y)V = R(V, W)X = o,
(4) R(X, V)W = R(X, W)V = f(V, W)VxG,

(5) R(X, Y)Z is the same on either B or M.

Here, K denotes the curvature tensor of (F, 9F) and


1
G = grad f = r;:; ( N ) Oy ·
2yT R+ 2T

Let {Ba}~=l be a basis of tangent vectors on SN and 9a(3 ~ 9 (Ba, Bf3)·
By (3) we have


R(8i,8j)ea = O, R(8i,8T)ea = O, R(Ba,ef3)8i = O, R(Ba,ef3)8T = O,

and hence


( R( oi, 8j )Ba, ok) = 0, ( R( oi, 8j )Ba, 8T) = 0, ( R( oi, Oj )ea, ef3) = 0,

(il(oi,8T)ea,8j) =O, (il(ai,8T)ea,8T) =0, (il(oi,8T)ea,ef3) =O,


( R(Ba, ef3)8i, e 7 ) = o, ( R(Ba, ef3)8n e 7 ) = o.


By (1) we have

R(Ba, ef3)B 7 = K(Ba, ef3)e 7 - JGJ~ [9(ea, e 7 )ef3 - 9(ef3, B 7 )Ba],

and hence


( R( ea, e(3)e7, Bo) g = T (K( ea, e(3)e7, Bo) g


1


  • ( N) [9(Ba, B 7 )9(Bf3, Bo) - 9(Bf3, B 7 )9(Ba, Bo)]
    4 R+ 2T
    TR
    2 N ( R + !Jr) (9(37~ao - 9a79(3o)
    = 0 mod O(N-^1 ),


since JGI~ = 4T(R~~), g (e(3, e 0 ) = r9 (ef3, Bo), and

1 '
(K(Ba,Bf3)B 7 ,Bo) 9 =
2

N (9(3 7 9ao - 9a79(3o) ·
Free download pdf