494 B. OTHER ASPECTS OF RICCI FLOW AND RELATED FLOWS
Hence, if we take ei ® ei, ei ® e2 + e2 ® ei, ei ® e3 + e3 ® ei, e2 ® e2, e3 ®.
e3, e2 ® e3 + e3 ® e2 as a basis for S^2 T* M, then
er DX (g) (()
-2E^1 mVlm + EmCVR.m + E^11 vn
-E1Cvc2 + E^11 v12
- EuVR.3 + E^11 v13
E11v22
E^11 v33
E^11 v23
E^22 v22 + E^33 v33 + 2E^23 v23
-E12V22 - E13V23
-E12V23 - E13V33
Env22
E^11 v33
Env23
The symbol as a matrix is given by
0 0 0 E22 E33 2E23
0 0 0 -E12 0 -E13
er DX (g) (() =
0 0 0 0 -E13 -E12
0 0 0 En 0 0
0 0 0 0 En 0
0 0 0 0 0 En
Since this matrix is upper triangular, its eigenvalues are 0 and E^11 , which
are nonnegative.
To eliminate the degeneracy, we apply DeTurck's trick. As in (3.29) on
p. 80 of Volume One, given a fixed torsion-free connection f', define the
vector field w = w (g, r) by
Wk, -;-g pq (rk pq _ r-k) pq.
Consider the second-order operator
Y (g) ~ Cwg.
We have