1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1
BIBLIOGRAPHY 515

[40] Buser, Peter; Karcher, Hermann. Gromov's almost fiat manifolds. Asterisque, 81.
Societe Mathematique de France, Paris, 1981.
[41] Cabre, Xavier. Nondivergent elliptic equations on manifolds with nonnegative cur-
vature. Comm. Pure Appl. Math. 50 (1997) no. 7, 623-665.
[42] Calabi, Eugenio. An extension of E. Hopf's maximum principle with an application
to Riemannian geometry. Duke Math. J. 24 (1957), 45-56.
[43] Calabi, Eugenio. On Kahler manifolds with vanishing canonical class. Algebraic
geometry and topology. A symposium in honor of S. Lefschetz, pp. 78-89. Princeton
University Press, Princeton, N. J., 1957.
[44] Calabi, Eugenio. Metriques kahleriennes et fibres holomorphes. Ann. Sci. Ecole
Norm. Sup. (4) 12 (1979), no. 2, 269-294.
[45] Cao, Huai-Dong. Deformation of Kahler metrics to Kahler-Einstein metrics on com-
pact Kahler manifolds. Invent. Math. 81 (1985), no. 2, 359-372.
[46] Cao, Huai-Dong. On Harnack's inequalities for the Kahler-Ricci flow. Invent. Math.
109 (1992), 247-263.
[47] Cao, Huai-Dong. Existence of gradient Ricci-Kahler solitons. In Elliptic and para-
bolic methods in geometry (Minneapolis, MN, 1994), 1-16; A K Peters, Wellesley,
MA, 1996.
[48] Cao, Huai-Dong. Limits of solutions to the Kahler-Ricci flow. J. Differential
Geom. 45 (1997), no. 2, 257-272.
[49] Cao, Huai-Dong; Chen, Bing-Long; Zhu, Xi-Ping. Ricci flow on compact Kahler
manifolds of positive bisectional curvature. C. R. Math. Acad. Sci. Paris 337 (2003),
no. 12, 781-784.
[50] Cao, Huai-Dong; Chow, Bennett. Compact Kahler manifolds with nonnegative cur-
vature operator. Invent. Math. 83 (1986), no. 3, 553-556.
[51] Cao, Huai-Dong; Chow, Bennett. Recent developments on the Ricci flow. Bull. Amer.
Math. Soc. (N.S.) 36 (1!;!99), no. 1, 59-74.
[52] Cao, Huai-Dong; Chow, Bennett; Chu, Sun-Chin; Yau, Shing-Tung, editors. Col-
lected papers on Ricci flow. Internat. Press, Somerville, MA, 2003.
[53] Cao, Huai-Dong; Hamilton, Richard S.; llmanen, Tom. Gaussian densities and sta-
bility for some Ricci solitons. arXiv:math.DG/0404165.
[54] Cao, Huai-Dong; Ni, Lei. Matrix Li-Yau-Hamilton estimates for the heat equation
on Kahler manifolds. Math. Ann. 331 (2005), no. 4, 795-807.
[55] Cao, Huai-Dong; Sesum, Natasa. The compactness result for Kahler Ricci solitons.
arXiv:math.DG /0504526.
[56] Cao, Huai-Dong; Zhu, Xi-Ping. A complete proof of the Poincare and geometrization
conjectures - application of the Hamilton-Perelman theory of the Ricci flow. Asian
J. Math. 10 (2006), 165-498.
[57] Carfora; M.; Marzuoli, A. Model geometries in the space of Riemannian structures
and Hamilton's flow. Classical Quantum Gravity 5 (1988), no. 5, 659-693.
[58] Carlen, E. A.; Kusuoka, S.; Strook, D. W. Upper bounds for symmetric Markov
transition functions. Ann. Inst. H. Poincare Probab. Statist. 23 (1987) 245-287.
[59] Carron, G. Inegalites isoperimetriques de Faber-Krahn et consequences. Actes de
la Table Ronde de Geometrie Differentielle (Luminy, 1992), Semin. Congr., 1, Soc.
Math. France, Paris 1996, 205-232.
[60] Cascini, Paolo; La Nave, Gabriele. Kahler-Ricci Flow and the minimal model pro-
gram for projective· varieties. arXiv:math.AG/0603064.
[61] Casson, Andrew; Jungreis, Douglas. Convergence groups and Seifert fibered 3-
manifolds. Invent. Math. 118 (1994), no. 3, 441-456.
[62] Chang, Shu-Cheng; Lu, Peng. Evolution of Yamabe constants under Ricci flow.
Preprint.
[63] Chau, Albert; Tam, Luen-Fai. Gradient Kahler-Ricci solitons and a uniformization
conjecture. arXiv:math.DG /0310198.

Free download pdf