BIBLIOGRAPHY 519
[134] Ecker, Klaus; Knopf, Dan; Ni, Lei; Topping, Peter. Local monotonicity and mean
value formulas for evolving Riemannian manifolds. Preprint.
[135] Eells, James, Jr.; Sampson, J. H. Harmonic mappings of Riemannian manifolds.
Amer. J. Math. 86 (1964), 109-160.
[136] Epstein, D. B. A. Periodic flows on three-manifolds. Ann. of Math. (2) 95 1972
66-82.
[137] Evans, Lawrence. Partial differential equations. AMS. Providence, 1998.
[138] Evans, Lawrence C. Entropy and partial differential equations. Lecture Notes at UC
Berkeley. 212 pp. http://math.berkeley.edu;-evans/entropy.and.PDE.pdf
[139] Evans, Lawrence; Gariepy, R. F. Measure theory and fine properties of functions.
CRC Press, Boca Raton, 1992.
[140] Fabes E. B.; Garofalo, N. Mean value properties of solutions to parabolic equations
with variable coefficients, Jour. Math. Anal. Appl. 121 (1987), 305-316.
[141] Fateev, V. A. ; Onofri, E.; Zamolodchikov, A. B. The sausage model (integrable
deformations of 0(3) sigma model). Nucl. Phys. B 406 (1993), 521-565.
[142] Feldman, Mikhail; Ilmanen, Tom; Knopf, Dan. Rotationally symmetric shrinking
and expanding gradient Kahler-Ricci solitons. J. Differential Geom. 65 (2003), no. 2,
169-209.
[143] Feldman, Mikhail; Ilmanen, Tom; Ni, Lei. Entropy and reduced distance for Ricci
expanders. arXiv:math.DG/0405036.
[144] Frankel, Theodore. Manifolds with positive curvature. Pacific J. Math. 11 (1961),
165-174.
[145] Friedan, Daniel Harry. Nonlinear models in 2 + c dimensions. Ann. Physics 163
(1985), no. 2, 318-419.
[146] Friedman, Avner. Partial differential equations of parabolic type. Robert E. Krieger
Publishing Company, 1983, Malabar, Florida.
[147] Futaki, Akito. An obstruction to the existence of Einstein-Kahler metrics. Invent.
Math. 73 (1983), no. 3, 437-443.
[148] Futaki, Akito. Kahler-Einstein metrics and integral invariants. Lecture Notes in
Math., 1314, Springer-Verlag, Berlin, 1988.
[149] Gabai, David. Convergence groups are Fuchsian groups. Ann. of Math. (2) 136
(1992), no. 3, 447-510.
[150] Gabai, David; Meyerhoff, G. Robert; Thurston, Nathaniel. Homotopy hyperbolic
3-manifolds are hyperbolic. Ann. of Math. (2) 157 (2003), no. 2, 335-431.
[151] Gage, M.; Hamilton, Richard S. The heat equation shrinking convex plane curves.
J. Differential Geom. 23 (1986), no. 1, 69-96.
[152] Gao, L. Zhiyong. Convergence of Riemannian manifolds; Ricci and Ln/^2 -curvature
pinching. J. Differential Geom. 32 (1990), no. 2, 349-381.
[153] Garofalo, N.; Lanconelli, E. Asymptotic behavior of fundamental solutions and po-
tential theory of parabolic operators with variable coefficients. Math. Ann. 283 (1989)
no. 2, 211-239.
[154] Gastel, Andreas; Kronz, Manfred. A family of expanding Ricci solitons. Variational
problems in Riemannian geometry, 81-93, Progr. Nonlinear Differential Equations
Appl., 59, Birkhhauser, Basel, 2004.
[155] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second
order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin,
2001.
[156] Glickenstein, David. Precompactness of solutions to the Ricci flow in the absence of
injectivity radius estimates. Geom. Topol. 7 (2003), 487-510 (electronic).
[157] Goldberg, Samuel I. Curvature and homology. Revised reprint of the 1970 edition.
Dover Publications, Inc., Mineola, NY, 1998.
[158] Gordon, C. McA.; Heil, Wolfgang. Cyclic normal subgroups of fundamental groups
of 3-manifolds. Topology 14 (1975), no. 4, 305-309.