BIBLIOGRAPHY 521
[184] Hamilton, Richard. Monotonicity formulas for parabolic flows on manifolds, Comm.
Anal. Geom. 1 (1993), 127-137.
[185] Hamilton, Richard S. Convex hypersurfaces with pinched second fundamental form.
Comm. Anal. Geom. 2 (1994), no. 1, 167-172.
[186] Hamilton, Richard S. The formation of singularities in the Ricci flow. Surveys in
differential geometry, Vol. II (Cambridge, MA, 1993), 7-136, Internat. Press, Cam-
bridge, MA, 1995.
[187] Hamilton, Richard S. A compactness property for solutions of the Ricci flow.
Amer. J. Math. 117 (1995), no. 3, 545-572.
[188] Hamilton, Richard S. Harnack estimate for the mean curvature flow, J. Diff. Geom.
41 (1995) 215-226.
[189] Hamilton, Richard S. Four-manifolds with positive isotropic curva-
ture. Comm. Anal. Geom. 5 (1997), no. 1, 1-92.
[190] Hamilton, Richard S. Non-singular solutions of the Ricci flow on three-manifolds.
Comm. Anal. Geom. 7 (1999), no. 4, 695-729.
[191] Hamilton, Richard S. Three-orbifolds with positive Ricci curvature. In Collected Pa-
person Ricci Flow, H.-D. Cao, B. Chow, S.-C. Chu, and S.-T. Yau, eds. Internat.
Press, Somerville, MA, 2003.
[192] Hamilton, Richard S. Differential Harnack estimates for parabolic equations,
preprint.
[193] Hamilton, Richard S.; Sesum, Natasa. Properties of the solutions of the conjugate
heat equation. arXiv:math.DG/0601415.
[194] Hamilton, Richard S.; Yau, Shing-Tung. The Harnack estimate for the Ricci flow on
a surface-revisited. Asian J. Math. 1 (1997), no. 3, 418-421.
[195] Han, Qing; Lin, Fanghua. Elliptic Partial Differential Equations. AMS/New York
University Press, 1997.
[196] Hartman, Philip. Ordinary differential equations. Corrected reprint of the second
(1982) edition. Birkhauser, Boston, MA.
[197] Hass, Joel; Morgan, Frank. Geodesics and soap bubbles in surfaces. Math. Z. 223
(1996), no. 2, 185-196.
[198] Heber, Jens. Noncompact homogeneous Einstein spaces. Invent. Math. 133 (1998),
no. 2, 279-352.
[199] Hebey, Emmanuel. Introduction a l'analyse non lineaire sur les varietes. Diderot
Editeur, Arts et Sciences, 1997.
[200] Helgason, Sigurdur. Differential geometry, Lie groups, and symmetric spaces. Pure
and Applied Mathematics, 80. Academic Press, Inc. [Harcourt Brace Jovanovich],
New York-London, 1978.
[201] Hempel, John. 3-Manifolds. Ann. of Math. Studies, No. 86. Princeton University
Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976.
[202] Hiriart-Urruty, Jean-Baptiste; Lemarechal, Claude. Fundamentals of convex analy-
sis. Springer, 2001.
[203] Hirsch, Morris W. Obstruction theories for smoothing manifolds and maps. Bull.
Amer. Math. Soc. 69 (1963), 352-356.
[204] Hirzebruch, F.; Kodaira, K. On the complex projective spaces. J. Math. Pures Appl.
36 (1957), 201-216.
[205] Hormander, Lars. Notions of convexity. Birkhauser, 1994.
[206] Hsu, Shu-Yu. Large time behaviour of solutions of the Ricci flow equation on lll?.^2 •
Pacific J. Math. 197 (2001), no. 1, 25-41.
[207] Hsu, Shu-Yu. Global existence and uniqueness of solutions of the Ricci flow equation.
Differential Integral Equations 14 (2001), no. 3, 305-320.
[208] Hsu, Shu-Yu. A simple proof on the nonexistence of shrinking breathers for the Ricci
flow. arXiv: math.DG/0509087.