1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1
BIBLIOGRAPHY 523

[234] Knopf, Dan. Positivity of Ricci curvature under the Kahler-Ricci flow. Commun.
Contemp. Math. 8 (2006), no. 1, 123-133.
[235] Knopf, Dan; Young, Andrea. Asymptotic stability of the cross curvature flow at a
hyperbolic metric. Preprint.
[236] Kobayashi, Shoshichi; Nomizu, Katsumi. Foundations of differential geometry. Vols.
I & II. Reprint of the 1963 and 1969 originals. Wiley Classics Library. A Wiley-
Interscience Publication. John Wiley & Sons, Inc., New York, 1996.
[237] Kobayashi, Shoshichi; Ochiai, Takushiro. Characterizations of complex projective
spaces and hyperquadrics. J. Math. Kyoto Univ. 13 (1973), 31-47.
[238] Kodaira, Kunihiko. Complex manifolds and deformation of complex structures.
Translated from the 1981 Japanese original by Kazuo Akao. Reprint of the 1986
English edition. Classics in Mathematics. Springer-Verlag, Berlin, 2005.
[239] Koiso, Norihito. On rotationally symmetric Hamilton's equation for Kiihler-
Einstein metrics. Recent topics in differential and analytic geometry, 327-337,
Adv. Stud. Pure Math., 18-1, Academic Press, Boston, MA, 1990.
[240] Kotschwar, Brett. Hamilton's gradient estimate for the heat kernel on complete man-
ifolds. Proc. A.M.S. To appear.
[241] Kotschwar, Brett. A note on the uniqueness of complete expanding Ricci solitons in
2-d. Preprint.
[242] Krylov, N. V.; Safonov, M. V. A property of the solutions of parabolic equations with
measurable coefficients (Russian), lzv. Akad. Nauk SSSR Ser. Mat. 44(1980), no. 1,
161-175.
[243] Ladyzenskaja, 0. A.; Solonnikov, V. A.; Uralceva, N. N. Linear and quasilinear
equations of parabolic type. (Russian) Translated from the Russian by S. Smith.
Translations of Mathematical Monographs, Vol. 23, American Mathematical Soci-
ety, Providence, R.I., 1967.
[244] Lauret, Jorge. Ricci soliton homogeneous nilmanifolds. Math. Ann. 319 (2001), no.
4, 715-733.
[245] Li, Peter. On the" Sobolev constant and the p-spectrum of a compact Riemannian
manifold. Ann. Sc. Ee. Norm. Sup. 4e serie, t. 13 (1980), 451-469.
[246] Li, Peter. Lecture notes on geometric analysis, RIMGARC Lecture Notes Series 6,
Seoul National University, 1993.
[247] Li, Peter. Large time behavior of the heat equation on complete manifolds with non-
negative Ricci curvature. Ann. of Math. (2) 124 (1986), no. 1, 1-21.
[248] Li, Peter. Lecture notes on geometric analysis. http://math.uci.edu/ pli/lecture.pdf.
[249] Li, Peter. Lecture notes on heat kernel. Lecture Notes at UCI taken by Jiaping Wang.
[250] Li, Peter. Lecture notes on harmonic functions. To appear.
[251] Li, Peter. Curvature and function theory on Riemannian manifolds. Surveys in Dif-
ferential Geometry: Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer. Vol
VII, International Press (2000), 375-432.
[252] Li, Peter; Tam, Luen-Fai; Wang, Jiaping. Sharp bounds for the Green's function and
the heat kernel. Math. Res. Lett. 4 (1997), no. 4, 589-602.
[253] Li, Peter; Yau, Shing-Thng. On the parabolic kernel of the Schrodinger operator.
Acta Math. 156 (1986), no. 3-4, 153-201.
[254] Lichnerowicz, Andre. Geometrie des groupes de transformations. (French) Travaux
et Recherches Mathematiques, III, Dunod, Paris, 1958.
[255] Lieberman, Gary M. Second order parabolic differential equations. World Scientific
Publishing Co., River Edge, NJ, 1996.
[256] Lott, John. On the long-time behavior of type-III Ricci flow solutions.
arXiv:math.DG /0509639.
[257] Lu, Peng. A compactness property for solutions of the Ricci flow on orbifolds. Amer.
J. Math. 123 (2001), no. 6, 1103-1134.
[258] Lu, Peng. Unpublished.

Free download pdf