1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1
BIBLIOGRAPHY 527

[334] Siu, Yum Tong. Lectures on Hermitian-Einstein metrics for stable bundles and
Kahler-Einstein metrics. DMV Seminar, 8. Birkhauser Verlag, Basel, 1987.
[335] Siu, Yum Tong. The existence of Kahler-Einstein metrics on manifolds with positive
anticanonical line bundle and a suitable finite symmetry group. Annals Math. 127
(1988), 585-627.
[336] Siu, Yum Tong; Yau, Shing-Tung. Compact Kahler manifolds of positive bisectional
curvature. Invent. Math. 59 (1980), no. 2, 189-204.
[337] Song, Jian; Tian, Gang. The Kahler-Ricci flow on surfaces of positive Kodaira di-
mension. arXiv:math.DG /0602150.
[338] Song, Jian; Weinkove, Ben. Energy functionals and canonical Kahler metrics.
Preprint.
[339] Souplet, Philippe; Zhang, Qi. Sharp gradient estimate and Yau's Liouville theorem
for the heat equation on noncompact manifolds. arXiv:math.DG/0502079.
[340] Stein, Elias. Singular integrals and differentiability properties of functions. Princeton
Univ. Press, 1970.
[341] Strominger, Andrew; Vafa, Cumrun. Microscopic origin of the Bekenstein-Hawking
entropy. arXiv:hep-th/9601029.
[342] Struwe, Michael. On the evolution of harmonic maps in higher dimensions. J. Dif-
ferential Geom. 28 (1988), no. 3, 485-502.
[343] Thurston, William P. Three-dimensional geometry and topology. Vol. 1. Edited by
Silvio Levy. Princeton Mathematical Series, 35. Princeton University Press, Prince-
ton, NJ, 1997.
[344] Tian, Gang. On Kahler-Einstein metrics on certain Kahler manifolds with 01 > 0.
Invent. Math. 89 (1987), no. 2, 225-246.
[345] Tian, Gang. Calabi's conjecture for complex surfaces with positive first Chern class.
Invent. Math. 101 (1990), no. 1, 101-172.
[346] Tian, Gang. Kahler-Einstein metrics with positive scalar curvature. In-
vent. Math. 130 (1997), no. 1, 1-37.
[347] Tian, Gang. Canonical metrics in Kahler geometry. Notes taken by Meike Akveld.
Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel, 2000.
[348] Tian, Gang; Yau, Shing-Tung. Kahler-Einstein metrics on complex surfaces with
01 > 0. Comm. Math. Phys. 112 (1987), no. 1, 175-203.
[349] Tian, Gang; Yau, Shing-Tung. Complete Kahler manifolds with zero Ricci curvature.
I. J. Amer. Math. Soc. 3 (1990), no. 3, 579-609.
[350] Tian, Gang; Yau, Shing-Tung. Complete Kahler manifolds with zero Ricci curvature.
II. Invent. Math. 106 (1991), no. 1, 27-60.
[351] Tian, Gang; Zhang, Zhou. Preprint.
[352] Tian, Gang; Zhu, Xiaohua. Uniqueness of Kahler-Ricci solitons on compact Kahler
manifolds. C. R. Acad. Sci. Paris Ser. I Math. 329 (1999), no. 11, 991-995.
[353] Tian, Gang; Zhu, Xiaohua. Uniqueness of Kahler-Ricci solitons. Acta Math. 184
(2000), no. 2, 271-305.
[354] Tian, Gang; Zhu, Xiaohua. A new holomorphic invariant and uniqueness of Kahler-
Ricci solitons. Comment. Math. Helv. 77 (2002), no. 2, 297-325.
[355] Tian, Gang; Zhu, Xiaohua. Preprint.
[356] Topping, Peter. Lectures on the Ricci flow. London Mathematical Society Lecture
Note Series (No. 325). Cambridge University Press, 2006.
[357] Topping, Peter. Diameter control under Ricci flow. Comm. Anal. Geom. 13 (2005)
1039-1055.
[358] Topping, Peter. Ricci flow compactness via pseudolocality, and flows with incomplete
initial metrics. Preprint.
[359] Tso, Kaising. On an Aleksandrov-Bakelman type maximum principle for second-
order parabolic equations. Comm. Partial Diff. Equations 10 (1985), no. 5, 543-553.

Free download pdf