1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. EXISTENCE OF AN ASYMPTOTIC SHRINKER in


Thus

2(n-1) (rt 7 ) +K(7)r(7))


:::::: J6(n+1) 7i/47-3/4 ( ve (q2, 7) + ~7-i/47i/4).


By applying this to (19.53), we conclude from (19.51) that

d 9 (r) (qi, qz) S v'6(n+1) J,' r^1 /^4 7-^3 /^4 ( ~ (q 2 , f) + ~ r-^1 /^471 /^4 ) d7


+ 4J37i/2 ( gi/2 (qi, 7) + gi/2 (q2, 7))

Therefore

= 4J6 (n + 1) 7i/^2 .Je (q2, 7) + 33 /^42 (n + 1) 7i/^2


+ 4J37i/2 (ei/2 (qi, 7) + gi/2 (q2, 7))

:::;: 4J6 (n + 2) 7i/2 (ei/2 (qi, 7) + gi/2 (q2, 7))


+ 33 /^4 2(n+1) 7i/^2.


gi/2 ( 7 ) + gi/2 ( 7 ) > 1 dg(r) (qi, q2)


qi, q2, - 4v'6 (n + 2) 7i/2

since^3114 2(n+i) i^8
4 V6(n+ 2 ) :::;:^2. We finally obtain (19.46) from

2

1

2

4 ( 1)


2
e (qi, 7) + e (q2, 7) + 1::::::
9

gi/^2 (qi, 7) + gi/^2 (q2, 7) +
2

5.1.3. Estimates for f and R in large neighborhoods of (qn 7).
The following is Lemma 8.35 in Part I.

D

LEMMA 19.47. Let (Mn, g (t))) t :::;: 0) be a K,-solution with basepoint

(p, 0). Let f (q, 7) be the reduced distance of g (-7) and for each 7 > 0 let qr


(^28) For any a, b > 0 we have
a^2 + b^2 + 1 > -4 ( a+ b + -1)
2



  • 9 2


since


a^2 + b^2 + 1 - c (a + b + ~)


2

= (1 - c) a^2 + (1 - c) b^2 - 2cab - ca - cb + ( 1 - D


> (1 - 2c) a^2 - ca+ -1 ( 1 - -c) + (1 - 2c) b^2 - cb + -1 ( 1 - -c).



  • 2 4 2 4

Free download pdf