1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

xviii


diam
div
En
Er(x, t)
exp
F
rfj
9 (X, Y) = (X, Y)
9 (t)

900 or 900 (t)
h or II
H

Hv:J for VE 8:


Hessf
I
id
int
inj
Isom
IVP
J
,\
L
LHS
log
L
e
[,
CCut
£,exp
CI
CJv
L (v, X)
μ
(M,g)
9Jtet
MVP

NOTATION AND SYMBOLS

diameter
divergence
]Rn with the fl.at Euclidean metric
heat ball of radius r based at (x, t)
exponential map
Perelman's energy functional
Christoffel symbols
metric or inner product
time-dependent metric, e.g., solution of
the Ricci fl.ow
limit Riemannian metric or solution of Ricci fl.ow
second fundamental form
mean curvature
set of closed half-spaces H containing
:J C JR.k with V E 8H

Hessian of f (same as \7\7 J)


a time interval for the Ricci fl.ow
identity
interior
injectivity radius
group of isometries of a Riemannian manifold
initial-value problem
Jacobian of the exponential map
,\-invariant
length
left-hand side
natural logarithm
£-distance
reduced distance or £-function
Lie derivative or £,-length
C-cut locus
£,-exponential map
£,-index form
£,-Jacobian
linear trace Harnack quadratic
μ-invariant
static Riemannian manifold
space of Riemannian metrics on a manifold
mean value property
Free download pdf