220 23. HEAT KERNEL FOR STATIC METRICS
Nate that for r < inj (g) we have that a is bounded and that
(23.19) 8loga 8r -- 8r^8 1 og v ~ ue~g-- -r-n -1 -- 0 (1)
for r near 0.^4
Applying the heat operator to (23.9) and using the defining equation
(23.11) and also (23.18) yields
(23.20)
N N
_ r 8log a "°""' k '°' k
--2(t-u) 8r EL</>k(t-u) +2L._.,,(t-u) (\JxE,\J</>k)
k=O k=O
N N
+EL 6-x</>k · (t - u)k - EL k</>k (t - u)k-l.
k=O k=O
Note that
(23.21) ( r )E-8^8 E TxM.
2 t-u r
We may thus rewrite (23.20) as, after factoring out E and cancelling the
term on the LHS,
N N
0 = _'!:._ 8log a'°' </>k (t - u)k-l - '°' (t - u)k-l r 8</>k
2 ~ L._.,, L._.,, ~
k=O k=O
N-l N
- L .6.x</>k · (t - u)k - L k</>k (t - u)k-l;
k=O k=O
that is, by grouping like terms, we have
(23.22) 0 = - (t - u)-^1 r (! 8loga </>o +^8 </>o)
2 8r 8r
N
+ L._.,, '°' ( -r 8</>k 8r - 2 r 8log a ) k^1
k=l^8 r </>k - k</>k + 6-x</>k-l (t - u) -.
Thus we have established the first part of
LEMMA 23.7 (Recursive ODEs for <i>k)· Let (Mn,g) be a closed Riemann-
ian man if old and let y E M.
(^4) By definition, <p (x) = o (l) iflimx-J-y ~f;j = 0.