248 23. HEAT KERNEL FOR STATIC METRICS
obtain
(23.105)
1
fPPN
.. (x, z, t - s) G (z, y, s) dμ (z)
M 8x18x1
1
8PN 8G
= - --j (x,z,t-s)
8
i (z,y,s)dμ(z)
M 8xz Xz
- f
8
P~ (x,z,t-s)G(z,y,s) (
8
8
i Jdetgk.e) dx;···dx~,
JM 8xz Xz
where [ 8 ~ 1 Jdetgk.e[ :SC in B (x,inj (g)). As in the proof of Lemma 23.26,
by applying (23.88) to (23.105), we have
(23.106) {
82
.PN. (x, z, t - s) G (z, y, s) dμ (z) :SC (t - s)-°',
JM 8x18x1
where a E (!, 1). Thus the integral on the RHS of (23.92), i.e.,
1
t1 82pN 1t 82JN
.. (x,z,t-s)G(z,y,s)dμ(z)ds =
8
i
8
. (x,y,s,t)ds
o M 8x~8x~ o x xJ
is the sum of two integrals each of which converges absolutely.
Now by Lemma 23.26, i.e., (23.90), proving Lemma 23.27 is equivalent
to showing that
(23.107) -^8 1t 8JN 1t 82JN
8
. -
8
. (x, y, s, t) ds =
8
.
8
. (x, y, s, t) ds
xi o xJ o xi xJ
exists. Let the path Ii be as above. By the mean value theorem, we have
(23.108)
1; ~ (ri ( h) , y, s, t) ds - J; ~ (ri ( 0) , y, s, t) ds -1t 82 JN ( t) d
h o 8 xi. 8 xJ. x, y, s, s
1
t ( 82JN 82JN )
=
8
.
8
. (ri (h*), y, s, t) -
8
.
8
. (x, y, s, t) ds
0 xi xJ xi xJ
for some h* contained in the interval from 0 to h.
Since 1; a~~~~j (x, y, s, t) ds is a sum of integrals which converge abso-
lutely, for any c: > 0, there exists r5 ( c:) > 0 such that
l
t 1::;N. (x',y,s,t),ds<c:
. t-8(c) X xJ
independent of x' E M. On the other hand, given r5 (c:) > 0, there exists
'TJ > 0 such that if Jhl < 'T], then
I
8
2
JN 82 JN I c
8xi8xJ (Ii (h*) 'y, s, t) - 8xi8xJ (x, y, s, t) < t