(^252) 23. HEAT KERNEL FOR STATIC METRICS
of the metric has the expansion (see formula (23.139) below)
<let (gkc (x)) = 1-5kC}RkpqCXpxq - 5kC~\7rRkpq£Xpxqxr
- t (okC}RkpqCXpxq)
2
- t (}RkpqCXpXq) (}RkrsCXrXs)
+ 0 kC( -^1 2 R )pqrs
20 \Jr \7sRkpqC + 45 Rkpqm Crsm X X X X
+o(r(x)^5 ),
so that (see Lemma 3.4 on p. 210 of [168])
<let (gkc( x))
= 1--R^1 xPxq - -\7^1 R xPxqxr
(23.114) 3Pq 6rpq
(
-^1 1 1 )pqrs
20 \7 r \7 sRpq + 90 RtpquRtrsu - lS RpqRrs X X X X
- 0 (r^5 ),
where Rpq is the Ricci tensor.
This formula implies
LEMMA 23.30.
a (x, y) = y/det (gkc) (x)
(23.115)
and so </>o has the expansion (which may be differentiated term by term)
</>o (x,y) = ( a-1/2) (x,y)
(23.116) = 1+
1
1
2
Rpq (y) xPxq +
2
~ '7rRpq (y) xPxqxr + 0 (r (x)^4 ).
Next we consider the Laplacian of the distance (squared) function r^2 =
d^2 ( ·, y). By (23.17), the Laplacian of the distance function is given by^11
Therefore
(23.117)
(^11) Alternatively,
A _ n-l 8loga
D.xr---+ r a r.
Llx (r^2 ) (x) = ( 2 l\7rl^2 + 2rilxr) (x)
8loga
= 2n + 2r ( x) ar ( x)
(l:lxr) (x) = H (x) = ( :r log Jdetg~) (x),
where H is the mean curvature at x of the geodesic sphere S (p, r ( x)).