272 24. HEAT KERNEL FOR EVOLVING METRICS
where Fk,£ is a C^00 covariant k-tensor on UrE[O,T] Minj(g(r)) x { T} X [O, T].
EXERCISE 24.9. Prove the above lemma.
Now let iJ : [O, oo) --+ [O, 1] be ·a nonincreasing C^00 cutoff function with
iJ (s) = 1fors:::;1 and iJ (s) = 0 for s;::::: 2. Define p ~ ~ min 7 E[O,T] inj (g (T)).
Given HN as above, define the parametrix
PN : M x M x JRf --+ JR
by
(24.24) P N ( x,y,·T,V ) 'T'T/. -(d^7 (x,y))H p N ( x,y,T,V. )
Analogous to Definition 23.11 we have
DEFINITION 24.10 (Parametrix for Lx, 7 ). We say that a C^00 function
P : M x M x JRf --+ JR is a parametrix for Lx,r if
(1) the functions Lx,rP and L;,vp both extend continuously to M x
M x JRf, where
L;,v ~ :'U + f::::.y,v - Q + R,
and
(2) lim 7 \,v P ( ·, T; y, v) = 8y and limv/'r P (x, T; ·, v) = 8x, that is, for
any function f E c^0 ( M),
(24.25a) lim r p (x, T; y, v) f (x) dμ (x) = f (y),
r\,v}M
(24.25b) lim r P(x,T;y,v)f(y)dμ(y)=f(x).
v/'r}M
By essentially the same proof as for Proposition 23.12, one can show the
following.
PROPOSITION 24.11 (Existence of a parametrix for Lx, 7 ). If N > n/2,
then PN is a parametrix for Lx,r·
Moreover, analogous to the Lemma 23.14, we have
LEMMA 24.12 (Derivatives of Lx,rPN)·
(24.26)
£ k N n k 2£ -i;_(x,y)
8t'Vx(Lx,rPN)(x,y,T,v) = (T-v) -2-- e^5 (-r-v) Gk,e(x,y,T,v),
where Gk,£ is a C^00 covariant k-tensor on M x M x JRf. In particular
(compare with (23.44)),
(24.27)
for some constant Co < oo.^2
(^2) Similarly to as in the previous chapter, one may replace the factor 5 on the RHS of