1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1
274 24. HEAT KERNEL FOR EVOLVING METRICS

Now define Fk ~ F Fk-l fork EN (F^1 ~ F); since convolution is


associative, we may write F*k = F * · · · * F (k-fold product).
With the parametrix PN defined by (24.24) and satisfying Proposition
24.11, we now follow §2 of the last chapter to establish the convergence of
the associated parametrix convolution series:
00
(24.30) H ~ PN + PN * L (Lx,TPN)*k.
k=l
Using the facts that
00 00
(Lx,TPN) * L (Lx,TPN)*k = L (Lx,TPN)*k
k=l k=2
and that for any GE c^0 (M x M x [O,oo))

(24.31) Lx,T (PN * G) = (Lx, 7 PN) * G - G,
we find that Lx, 7 H = 0. By Lemma 26.4, we also have L;,vH = 0.
Toward verifying (24.31), we first generalize to the time-dependent met-
ric case the properties of differentiating a convolution with the parametrix
discussed in §3 of the previous chapter.
Similarly to Lemma 23.26, we have

LEMMA 24.16 (First space derivatives of a convolution with PN)· Let

(U, {xi} ~= 1 ) be a local coordinate system on M. If


G E C^0 (M x M x JR~) ,


then PN * G is C^1 with respect to the space variables and for x E U, the first


space derivatives of PN * G are given by


(24.32)

8 1


7
axi (PN * G) (x, T; y, v) = v } M { 8PN axi (x, T; z, a-) G (z, CT; y, v) dμg(u) (z) dCT.

SKETCH OF PROOF. Define

(24.33) JN (x, T; y, v; CT)~ JM PN (x, T; z, CT) G (z, CT; y, v) dμg(u) (z),

so that


and


I


8PN 8xi ( x, T,. z, CT ) I -< C ( T - CT )-a rT,X ( z )2a-n-l

Free download pdf