282 24. HEAT KERNEL FOR EVOLVING METRICS
of a C^2 function f. Using giJ = <\j +o (r (x)^2 ), we compute using (23.113)
that
Therefore
Aj - ij 8
2
~ - g [)xi[)xJ f - ~R 3 kqX q [)xk [) f +^0 ( ( r x )2).
Now applying this formula to the Laplacian of (24.49), we have^4
(~x,r'l/Jo)(x,y,T) = 2giJ .. ( 1^1 )
12
Rij + 4Rij (y,T)
+ 2~ijx~ + ljx~ + lix~)(
2
1
4
\Jk~j + 1
1
2 \JkRij) (y, T)
- 3 ~ Rk q xq a'l/Jo axk + 0 (r r (x)^2 )
1 1
(24.50) = 5R(y,T) + 2,R(y,T)
i
+ x; (\JiR + 2 (divR)i +\Jin) (y, T) + 0 (rr (x)^2 ) ,
where we used Rkqxq~~Z = 0 (rr (x)^2 ) and
( 2 ~ \J kRij + 1
1
2 \J k Rij) gPq [):~xi ( x~x~xt)
= (gijxk r +gkjxi_ 1 +gkixj) r (]_\JkR-· + !\JkR··)
12 iJ 6 iJ
i
= x; (\JiR + 2 (divR)i + \JiR)
(here we applied the contracted second Bianchi identity).
To warm up, we first consider 1/J1 along the diagonal. Evaluating (24.16)
for k = 1 at x = y, we have
1/J1 (y,y,T) = -Lx,r (1/Jo) (x,y,T)lx=y.
(^4) Compare with (23.124) in the static metric case.