288 24. HEAT KERNEL FOR EVOLVING METRICS
and
respectively. Summing the above two formulas yields the following expres-
sion for (24.66a):
w
1
= r;. (-fr+ ~x,T) (r;.) l\7 x,T1);ol
2
4r^2 4r 1);5
- 1);1 +(-fr :a ~x,T) 1);o + 0 (r).
By (24.69), for (24.66b) we have
(24.70) W 2 = _ r;. + log1);o + 1);1 + 0 (r).
4r^2 T 1);o
Summing these two formulas yields
(24.71) W= -(-fr +~x,T) (r;.) +4log1);o _ l\7x,^7 1);ol
2
4T 1);5
+ 21);1 + ( 1r1);: ~X,T) 1);o + Q ( T).
On the other hand, we obtain from (24.68) and (24.49) that
- ( :T + ~x,T) (r;.) + 4log1);o
(
=-2n+^2 3Rij-2Rij ) (y,r)x~x~..
+ (~~j + Rij) (y, r) x~xt + 0 (r 7 (x)^3 )
(24.72) = -2n + (~j - Rij) (y, r) x~xt + 0 (r 7 (x)^3 ).
We also have from (24.49) that