1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1
294 24. HEAT KERNEL FOR EVOLVING METRICS

Claim. The series in (24.83) converges uniformly on 8M x [O, T] to a
continuous function and we may exchange the sum and integration:

(24.84)

1


T 1 8ii OO
= d(J -
8


  • (xo, Ti z, ()) L Ak (z, ()) dμg(u) (z).
    O 8M Vz,u k=l


The claim, (24.83), and summing (24.82) from k = 1 to oo imply
(24.85) ~

1


7
'I/Joo (xo, T) = 2b (xo, T) + 2 d(J^1 -£)-8H (xo, Ti z, ())'I/Joo (z, ()) dμg(u) (z),
0 8M UVz,u

i.e., 'ljJ 00 is a solution of (24.78). By (24.76) we conclude

(24.86)

1


7
U'¢= (x, T) = - d(J^1 -£)-8H (x, Ti z, ())'I/Joo (z, ()) dμg(u) (z)
0 8M UVz,u
is the desired solution to Lemma 24.31.

Now we prove the claim. First we rewrite the Ak. Fork= 1 we have


1


7
Ai (xo, T) = 2 d(J^1 -£)-8H (xo, Ti z, ())Ao (z, ()) dμg(u) (z)
0 8M UVz,u

= 2 r d(J { Mi (xo, Ti z, ()) b (z, ()) dμg(u) (z)'


lo laM


where

is defined by

(24.87)

8ii


Mi (xo, Ti z, ()) ~ 2-


8


  • (xo, Ti z, ()).
    Vz,u
    By induction we can show that


(24.88) Ak (xo, T) = 2 r dO" { Mk (xo, Ti z, ()) b (z, ()) dμg(u) (z)'


lo laM


where the functions


Mk : 8.M. x 8M x JR~ -+ JR


are defined recursively by
(24.89)


1


Mk+l (xo, Ti z, ()) ~ 2 T1 -8ii
8

--(xo, Ti w, p) Mk (w, Pi z, ()) dμg(p) (w) dp
u 8M Vw,p
Free download pdf