320 25. ESTIMATES OF THE HEAT EQUATION FOR EVOLVING METRICS
PROOF. Let 'Y: [Ti, T 2 ] --+ M be a smooth path joining x1 to x2. By the
fundamental theorem of calculus,
1
u(x2, T2)
og u(x1, T1)
1
T2 d
= -d (log U ( / ( T) , T)) dT
Tl T
= 1T
2
( ( 8l~g u) ( 'Y ( 7 ) , T) + / (V' log u) ( 'Y ( T) , T) , ~'Y ( T)) ) dT.
Tl \ UT \ T g(T)
Applying (25.54), we have
1
u(x2, T2)
og u(x1, T1)
;:::: 1T
2
((1 -E) [V' log u[~(T) ( 'Y ( T) , T) + / (V' log u) ( 'Y ( T) , T) , ~'Y) ) dT
Tl \ T g(T)
- 1:
2
( ( 2 _ ~E) T - Q ( / ( T) , T) - C7) dT
2:- 1 1T2ld'(T)l2 dT--n-log(T2)-c11(T2-T1),
4(1-E) Tl dT g(T) 2-3E Tl
where Cn = C7 +supMx[T 1 ,T 2 ] Q. Exponentiating, we obtain for any path/
u(x2,T2) > e-C11(Tz-T1) (T2)-2.:'..'3e e-4f1<=~)
u(x1, T1) - T1 '
where
A (r) = 1T2 I ~'Y (7)12 dT.
Tl T g(T)
Now let 'Y be a constant speed minimal geodesic with respect to g, so that
I
d/ (T)I = d9 (x1,x2).
dT g T2 - T1
Then, using (25.57), we obtain
A (r) ~Co 1T2 I d1 (T)l2 dT =Cod~ (x~, x2).
Tl dT g T2 Tl
The corollary follows. D
In the case of the Ricci fl.ow, by the same argument as in the proof of
Corollary 25.12, we have the following.
COROLLARY 25.13 (Classical-type Harnack inequality for Ricci fl.ow).
Let g (T), TE [O, TL be a complete solution of the Ricci flow as in Theorem
25.9 and such that for each TE [O, TL
C 01 g ~ g (T) ~Cog