- HEAT KERNEL FOR AN EVOLVING METRIC 339
In particular,
(26.25)
(a:: + ,6,,y,vHD) (x, Ti y, v) + (R - Q) (y, v) HD (x, Ti y, v) = 0,
(26.26) lim HD (x, Ti ·, v) =Ox.
V/'T
PROOF. The proof of Lemma 26.3 holds for the Dirichlet heat kernel
since the integration by parts in (26.13) is still valid. D
Similarly to Lemma 26.5, we have
LEMMA 26.10 (L^1 -norm of Dirichlet heat kernel is bounded). The Dirich-
let heat kernel HD for Lx, 7 , on a compact manifold (Mn, g ( T)) with nonempty
boundary, satisfies:
(1)
(26.27)
for any y E int (M) and 0 :S v < T :S T, where C1 is as in (26.18).
(2)
(26.28) JM HD (x, Ti y, v) dμ 9 ( 7 ) (x) 2:: 1-C (T - v)
for any y E int (M) and TE [O, T], where C < oo depends only on
A~ sup JRij (x, T)J 9 ( 7 ) < oo,
Mx[O,T]
(26.29)
(26.30) r ~ -
4
1
min { min d 9 ( 7 ) (y, 8M), min inj g( 7 ) (y)},
TE[O,T] TE[O,Tj
C in (25.84), C1 in (26.18), and maxMx[O,T] JRcJ.
PROOF. (1) We compute
! JM HD (x, T; y, v) dμ 9 ( 7 ) (x)
=JM (a:: (x, Ti y, v) + R (x, T) HD (x, T; y, v)) dμg(T) (x)
=JM (,6,,x,THD) (x,T;y,v)dμg(T) (x)
+JM (R-Q) (x, T) HD (x, T; y, v) dμg(T) (x)
:Sr Vx(HD)(X,Tiy,v)dμ 9 ( 7 )(x)
JaM
- C1 JM HD (x, Ti y, v) dμ 9 ( 7 ) (x),