- HEAT KERNEL FOR AN EVOLVING METRIC 343
PROOF OF LEMMA 26.14. (1) Upper bound. Let {DihEN be an exhaus-
tion of M as above and let Hni (x, r; y, v) be the Dirichlet heat kernel of
(ni,g (r)) as in (24.107), i.e.,
_lim Hni (x,r;y,v) = H(x,r;y,v).
i--+oo
By the upper bound (26.27), with 'M =Di', we have
r Hni (x,r;y,v)dμg(T) (x) s eCi(T-v)
lni
for any y E int (Di) and 0 S v < T S T. Since Hni converges to H, we
conclude
(26.39) JM H(x,r;y,v)dμ 9 ( 7 ) (x) S eCi(T-v)
for any y E M and 0 S v < T S T.
(2) Lower bound. We prove a lower bound for the integral on the
LHS of (26.39). Let ¢ be the cutoff function defined in (25.85). Since
supM !sect (g (0))1, SUPMx[O,T] IRijl, and SUPMx[O,T] IY'iRjkl are finite, by
(25.86), (25.94), and (25.95), we have
(26.40) 1~g(T)¢I s Vn JV'Y'¢lg(T) s Vn (CV</) ~ + R2 C) s R Cn
for some constant Cn < oo independent of R, where we assume R 2 1. We
compute for any r E (0, T)
Id~ JM ¢(x)H(x,r;y,v)dμ 9 (7 ) (x)I
= IJM ¢ (x) ( ~~ (x, r; y, v) + R (x, r) H (x, r; y, v)) dμg(T) (x)I
S IJM ¢(x) (~x,TH) (x,r;y,v)dμ 9 ( 7 ) (x)I
+ IJM ¢ (x) (R-Q) (x, r) H (x, r; y, v) dμ 9 ( 7 ) (x)I
S IJM H (x, r; y, v) (~x, 7 ¢) (x) dμ 9 ( 7 ) (x)I
- C1 JM¢ (x) H (x, r; y, v) dμg(T) (x).
Applying (26.40) and (26.39) to this, we obtain
__!},_ ( cp(x)H(x,r;y,v)dμg(T)(x)