1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. BOUNDS OF THE HEAT KERNEL FOR AN EVOLVING METRIC 349


Given R > 0, let


NR (K) ~ { x EM : dg(O) (x, K) :'.SR}


denote the R-neighborhood of JC,. We shall assume that R is sufficiently
small so that NR (K) c int (0). Define PR: 0-+ [O, R] by


( )

. { R-dg(O) (x, K) if x E NR (K),
PR X =


· o if x E o -NR (K).


Since IV PRl;(O) ::; 1 in 0 and g (r) ~ C0-^1 g (0) for r E [O, T], where Co ~


e^2 Tsupl'R-ijl < oo, we have


(26.53)

on 0 x [O,T].


Given 0, define


e: 0 x (O,min{T,<Y})-+ IR'.


by


'> c( x,r )=-. -PA(x)
2Co (<Y - r)

We have that e is a Lipschitz function with


ae 1 2
OT + 21ve1g(T)

PA (x) PA (x) IV PRl;( 7 )




    • 2+ - 2
      2Co (<Y - r) 2C;5 (<Y - r)




(26.54) ::;^0


by (26.53).
Using (26.54), (26.51), and (26.50), we compute that


d~ Jn v^2 eedμg(T) = Jn ( 2v ~~ + v


2
~; + v

2

R) eedμg(T)


:S Jn (2v~v - ~v^2 1ve1

2


  • 2 ( Q +Co:__ ~R) v


2

) eedμg(T)

(26.55) ::; -~ r l2VV + vve1 eedμg(T) + r 2V ~V eedμg(T)
2k Jen uv
::; 0

since v = 0 on 80 x [O, T] (all we need is vg~ :S 0 on 80 x· [O, T]).


STEP 2. Upper estimate for IR (r). Let

(26.56) IR (r) ~ r v^2 (x, r) dμg(T) (x).
ln-NR(K)
Free download pdf