- BOUNDS OF THE HEAT KERNEL FOR AN EVOLVING METRIC 357
PROOF. We only prove the inequality
H(x,T;y,v)::; ( ~)
Vol_g B_g x, y ~- 2 -
and leave the other one as an exercise. Let <T ~ fl and r ~ d_g ( x, y).
(1) If <T .2:: f, then we may invoke Lemma 26.17 to obtain
c
H(x,T;y,v):SVil-B-( 0 g g x, (T )
1
Ce2as. - r2
< e 2050-2
- Vol_g B_g (x, <T)
for any constant C5 > 0.
(2) Suppose <T < f. Recall that (26.65) says
C3 exp ( - 2 6:cr2 )
H(x,T;y,v)::; 1/2 1/2.
Vol 9 B_g (x, <T) · Vol 9 B_g (y, <T)
(26.66)
Since B_g (x, <T) C B_g (y, f + <T), regarding the RHS of (26.66), we have
-1 _ 1 ( Vol_gB_g(y,r+<T)
Vol 9 B_g(y,<T):SVol 9 B_g x,<T) Vil-B-( 0 g g y, (T )
Vol_...K__ B (r + <T)
:S Vol_§l B_g (x, <T) Vol~~ B (<T) '
n-1
where we used the Bishop-Gromov relative volume comparison theorem and
where Vol_...K_ B (r) denotes the volume of a ball of radius r in the simply-
n-1
connected space form with constant sectional curvature - n1:. 1. Thus
1
C 3 exp (-2C4cr r^2 2 ) Vol--^2 K B (r + <T)
(26.67) H (x, T; y, v) :S ( ) n;l
Vol_g B_g x, <T Vol2 K B (<T)
-n-1
For all <T,r > 0 such that <T::; max{r, A}, we have
(
r2 ) Vol_...K__ B (r + <T)
exp - 2C4<T^2 Vol~~ B (<T)
n-1
(
r2 ) Vol_...K__ B (2r)
<ex --- n-1
- P 2C4<T^2 Vol_...K__ B (<T)
n-1
(26.68)