1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. DISTANCE-LIKE FUNCTIONS ON NONCOMPACT MANIFOLDS 383


we obtain

fl f e-ar2(x)77 (x) [\7f12 (x, t) dμ (x) dt


lo 1B(0,2R)


1


11 ear^2 (x) 2
S 2C + -( -) 1\7 (e-ar

2
(x)77 (x)) I f^2 (x, t) dμ (x) dt.
O B(0,2R) 77 X
Now since f (x, t) :::; r (x) + C and

1\7 ( e-ar2(x)77(x))12 S 2e-2ar2(x) ( 4a2r2 (x) 772 (x) + [\777[2 (x))


(note that [\7r[ :::; 1 a.e.), we have

fl f ear2(x) I 2 12


lo 1B(0,2R) 77 (x) \7 ( e-ar (x)77 (x)) f2 (x, t) dμ (x)

:::; f


1

f 2 (r (x) + C)^2 e-ar


2
(x) (4a^2 r (x)^2 77 (x) + [\7^77 [

2

(x)) dμ (x),


lo 1B(0,2R) 77 (x)


which, for a sufficiently large depending only on n and K, is bounded in-


dependent of the RE [1, oo) used in the definition of 77 (where we used the


volume comparison theorem).


Step 3. There exist constants Cn,K,2 < oo depending only on n and K


such that


[\7\7 f[ (x, 1) S Cn,K,2

for all x EM.


Given any point x E M, we have that


(26.146) expx: B ( 0, p/VK) -+ B ( x, p/VK)


is a local diffeomorphism, where p > 0 is a universal constant and where


B ( 0, p/VK) C TxM is the ball ofradius p/VK centered at 0 with respect


to the inner product g (x). We consider the pulled-back metric


(26.147)

on B (o,p/VK). Define


j: iJ (o,p/VK)-+ IR


by


J (V, t) ~ f (expx (V), t) - u (x).


Note that from Step 1,


If (O,t)I = [f(x,t)-u(x)[:::; C1

Free download pdf