1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. GRADIENTS OF CONVEX FUNCTIONS ON RIEMANNIAN MANIFOLDS 439


Then I! Vi +! Vz I < 1,! Vi +! Vz E T pC, and! Vi +! Vz -/= 0 by Lemma
H.25(iii). From the convexity of (Dv f) (p) in V, we have


(n~v 1 +~v 2 f) (p) :S ~ (DVif) (p) + ~ (Dv 2 J) (p) = _min (Dvf) (p).
VETpCns;-^1

It .c 10 11 ows f rom l~Vi+~Vil ~Vi+~v^2 E T-p C n sn-l P th a t


This is a contradiction and hence the minimum in (H.26) is attained by a
unique vector in TpC n s;-^1. This proves (iv) and the lemma. 0

3.2. Properties of generalized gradients of convex functions.


Recall that C:Xo ( C) is given by Definition H.32 and

finf ~inf {f (q) : q EC}.


LEMMA H.37 (Directional derivatives and the generalized gradient). Let

f E C:Xo (C). Suppose finf < 0.


(1) If p EC is such that f (p) = finf, then


(H.27) (Dv f) (p) 2: - (\/ f (p), V) for any VE TpM,


where ! f (p) is any generalized gradient vector.


(2) If p E C is such that f (p) > finf, then


(H.28) (Dv f) (p) 2: - (\/ f (p), V) for any VE TpC,


where ! f (p) is the unique generalized gradient vector.


PROOF. (1) If f (p) = finf, then p E int (C) and


(Dv !) (p) 2: 0


for all VE TpM· Hence, by (H.18), we have


I\/ f (P)I =mm. { ( Dv !VI f) (p) : VE TpM - { .... 0 } }.


Thus, for all V E TpM,

(Dv f) (p) 2: !VI· I\/ f (P)I 2: - (\/ f (p), V) ·


(2) If f (p) > finf, then there is a (unique) ! f (p) E TpC by Lemma


H.36(iii). For any VE TpC, by Lemma H.18(ii) we have


! f (p) + .\ v E TpC

Free download pdf