60 18. GEOMETRIC TOOLS AND POINT PICKING METHODS
Then j
(18.42) R (y, t) :S 2R(y*, t*)
PROOF. ·we argue by contradiction. Suppose there exists
(18.43) (w,s) EBh(t*) (y*,
1
1
0
A^1 l^2 R-^112 (y,t)) x [t-DR-^1 (y,t),t]
satisfying
(18.44)
Then s satisfies
s - to 2: (t - to) - DR-^1 (y, t*)
D
(^2) (t - to) - C + B (t - to)- 1
t - to
-*--
- 2 '
where we have used assumption (iv) and, in the last inequality, D :S C(t*-io)+B.
Hence, using (iv) again, we have
Thus (w, s) E NB,c·
R (w, s) > 2R(y, t)
> 2 ( C + B (t* - to)-^1 )
2: C + B ( s - to )-^1.
It follows from D :S 10 ~~~l) <A that
s E (t -AR-^1 (y, t), t].
If we can show the claim that
(18.45) w E Bh(s) (p,dh(t) (y,p) +A^112 R-^112 (y,t)),
then we can apply Lemma 18.24 to get R (w, s) :S 2R(y*, t*), which is the
desired contradiction to (18.44).
Now we estimate the distance dh(s) (w,p). Let
(t$,t] c [t-DR-^1 (y,t),t*]