1547845447-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_IV__Chow_

(jair2018) #1

15. The quantity Q must be identically zero


and

(29.199)
8
at l~eucvil
2

= V~euc l~eucvil


2


  • 2v l~eucval
    2

    • 4~eucV l~eucvil
      2




+ 2vi~eucVi~~uc V - 8~eucViV£jiVej.
From (29.198), (29.199), and dropping the vanishing terms

~eucv(lvijk/
2


  • l~eucvi) - 2V£iVijkV£jk + 2VjkVijk~eucVi = 0,
    we compute using (29.175) that


(29.200)

8
at laijk 1

2
= V~euc laijk 1

2


  • 4R laijk /


2

2


  • ::(l8e (vi.iijk)l
    2

    • l"Vv l
      2
      li.iijkl
      2

      • 3vi.iejkVe~eucVjk)·
        v






To analyze the RHS of (29.200), let Zjk = ~eucVjk - ~~;ucVbjk· Since


I--^1


(^2 1) l"-1 (^2) 1- 12


veaejk = - v v aijk


2

125

(which is analogous to (29.161)) and since 15ei8e (vaijk) = vei.iejk + ~Zjk, by (29.157)
we have
/Be (vaijk)l^2 - I TF(8 (va))eijkl^2 = l8i (vaijk)l^2
1 -2
= 2 l"Vvl
2
laijkl
2
+ viaijkVZjk + v
4
lzjkl^2.

Applying


2 l"Vvl
2
laijkl
2
+ vvt /aijkl; = 2veaijk TF(a(va))eijk + 2 lvtiitjkl
2
+ i!ti.itjkVZjk

to (29.200), we calculate t hat


BQ - - -
Dt = V~eucQ - 4RQ

- 2 (lae (vaijk)l


2
+ ~ l"Vv l
2
li.iijkl
2


  • 3vei.iejkV~eucVjk + i!i!t laijkl;)


= v~eucCJ - 4RQ - 2(1 TF(a(va))eijk + i!ti.iijkl^2 - li!tiitjkl


2
)


  • 2

  • 21 ~zjk - vei.iejk I


Again applying (29.157) yields (29.196). This completes the proof of Lemma 29.48.



  1. The quantity Q must be identically zero


Let Q = v /TF(B)l^2 , as defined in (29.134). In this section we shall prove the


following. Since we have shown in Proposition 29.46 that Q being zero implies that
g(t) is either a shrinking round 2-sphere or the King- Rosenau solution, this will
complete the proof of the main Theorem 29.l.


PROPOSITION 29.49. Ifμ> 0 in Proposition 29.36, then Qmax(t) ~ maxx Q(x, t)
is nonincreasing and satisfies


(29.201) lim Qmax(t) = 0.


t-+-oo

Hence Q(x, t) = 0 on S^2 x (-oo, 0).

Free download pdf