l. REDUCED DISTANCE OF TYPE A SOLUTIONS 143
independent of i. Using the Banach- Alaoglu theorem, there exists a subsequence
such that iii converges weakly in W^1 •^2 (K x [t 1 , t 2 ]) to f=l/Cx(t t 1.^3 Hence
/Cx[ti.t 2 ]^1 • 2
(30.37) ( v ei, V <p) _ - --;:;-'P dμ 9 , dt
i
t
2
j ( _ eii )
t 1 Moo 9, ut
i
t2 r ( ee= )
---+ t1 j Moo (V £=' V <p) 900 - fit tp dμ9oo dt.
STEP 3. Convergence of ftt,^2 J Moo [Vii[~, <p dμ9, dt. We divide the proof into
two substeps.
STEP 3A. Lower bound for lim infi-t= ftt,^2 J Moo f Vii[~, <p dμ 9 , dt. We have
0 ~ i t
2
r lve{X) - vii /
2
'P dμ9oodt
t 1 j Moo 900
= it2 1 Ive= I ~00 'P dμ9oo dt + it2 1 Iv ii I ~00 'P dμ9oo dt
t1 Moo t1 Moo
- 2 jt
2
j ( v e{X)' vii) 'P dμ9oo dt.
t 1 M 00 900
Taking the lim inf of this implies that
(30.38) li~~fit
2
1 [Vii[~ 00 <pdμ9 00 dt ~ it
2
1 [V£{X)[~ 00 <pdμ9 00 dt.
t1 Moo t1 Moo
By the convergence of gi to g=, we obtain
lim inf i t
2
f Iv ii I~' 'P dμ 9 , dt ~ it
2
j Ive= I ~ 00 'P dμ 900 dt.
t-t<Xl t1 } Moo t1 Moo
STEP 3B. Upper bound for limsupi-+= ftt,^2 JM 00 [Vii[~ydμ9,dt. Since ii con-
verges weakly to e{X) in W^1 •^2 '
(30.39) limsuplt
2
j 1viif~ootpdμ9oodt-it
2
r [Vf{X)l~oo tpdμ9oodt
t-t<Xl t1 Moo ti } Moo
= lim sup it
2
j (vii - v e{X)' 'P vii) dμ9oo dt.
i-+= t 1 M 00 900
By Cheeger- Gromov convergence, we may replace g= by gi in the LHS of (30.39).
Step 38 shall follow from showing that
(30.40)
is nonpositive.
The argument below of Enders follows Lemma 9.21 in Morgan and Tian [251].
Recall from (7.92) in Part I that for each i sufficiently large we have the elliptic
partial differential inequality:
- 2 ii-n
2t::.. 9 ,ei - 1vei1 9 , + R9, + wi _ t ~ o,
- 2 ii-n
3The choice of metric on M= x (a=, w=) used to define W^1 •^2 (K x [t1, t2]) is not essential.