- GRADIENT SHRINKERS WITH NONNEGATIVE RICCI CURVATURE 31
for any continuous piecewise c= function ( : [O, r (x)] -t JR satisfying ( (0)
( (r (x)) = 0. Now define (to be
( (s) = { ~
r(x)-s
ro
if 0 ::::; s ::::; 1,
if 1 < s ::::; r ( x) - ro,
if r ( x) - ro < s ::::; r ( x) ,
where ro is to be chosen below. We have
r(x)
Jo (^2 Rc(r^1 , 1^1 )ds::::;(n-l)(ri]^1 +1).
From this we obtain
(27.142)
1 r(x) Re (r', 11 ) ds::::; (n - 1) (r 01 +1) + fo
1
(1 - (^2 ) Re (r', 11 ) ds
i
r(x)
+ (l-(^2 )Rc(r',1^1 )ds
r(x)-ro
2
::::;(n-l)(r 01 +1)+- max_ Rc(V,V)
3 VETyM, IVl=l, yEB 6 (1)
i
r(x)
+ r(x)-ro R (r(s)) ds
since Re;::: 0.
We now estimate J;(~x/-ro R ( 1( s)) ds. Since V R = 2 Re (V f) and Re 2: 0, we
have for all y E M
IV RI (y) ::::; 2 IRc l (y) IV fl (y) ::::; 2R (y) ( ~r (y) + Vf(O)) ,
using (27.30). Thus, if y EM satisfies r (y) ;::: 1, then
(27.143) IVlnRl(y)::::; (1+2Vf(O))r(y).
Now choose r 0 =^4 S(~)l) ::::; 1. Suppose that s E [r (x) - ro, r (x)]. Using
r (1(s)) ;::: 1, the assumption that R (x) ::::; 1, and (27.143), we compute that
lnR(r(s))::::; ln Rl~~~))
r(x)
::::; Js IVlnRI (r(s))ds
::::; (1+2Vf(O)) ir(x) r (r(s)) ds
r(x)-ro
::::; (1+2Vf(O))ror (x)
::::; 4 (n - 1) (1+2V](O)).
That is, for s E [r (x) - ro, r (x)],
R (r(s)) ::::; e4(n-1)(i+2v7(0)).