Background References Quoted
(Part 1: also used by GLS)
[Asc86a] M. Aschbacher, Finite group theory, Cambridge Studies in Advanced Math., vol. 10,
Cambridge U. Press, Cambridge, 1986, 274 pages.
[Asc94] ___ , Sporadic groups, Cambridge Tracts in Math., vol. 104, Cambridge U. Press,
Cambridge, 1994, 314 pages.
[BG94] H. Bender and G. Glauberman, Local analysis for the odd order theorem, London Math.
[Car72]
[Fei82]
Soc. Lecture Notes, vol. 188, Cambridge U. Press, Cambridge, 1994, 174 pages.
R. Carter, Simple groups of Lie type, Wiley, London, 1972, 331 pages.
W. Feit, The representation theory of finite groups, North Holland, Amsterdam, 1982,
502 pages.
[FT63] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13
(1963), 775-1029, (Chapter V, and the supporting material from Chapters II and III
only).
[GLS94] D. Gorenstein, R. Lyons, and R. M. Solomon, The classification of the finite simple
groups, Math. Surveys and Monographs, vol. 40.1, Amer. Math. Soc., Providence RI,
1994, 165 pages.
[GLS96] , The classification of the finite simple groups. Number 2. Part I. Chapter G.
General group theory, Surveys and Monographs, vol. 40.2, Amer. Math. Soc., Providence
RI, 1996, 218 pages.
[GLS98] , The classification of the finite simple groups. Number 3. Part I. Chapter A.
Almost simple K-groups, Surveys and Monographs, vol. 40.3, Amer. Math. Soc., Provi-
dence RI, 1998, 419 pages.
[GLS99] , The classification of the finite simple groups. Number 4. Part II. Chapters 1-4.
Uniqueness theorems, Surveys and Monographs, vol. 40.4, Amer. Math. Soc., Providence
RI, 1999, 341 pages.
[GLS02] , The classification of the finite simple groups. Number 5. Part III, Chapters 1
[Gor80]
[HB85]
- 6: The Generic Case, Stages 1-3a, Surveys and Monographs, vol. 40.5, Amer. Math.
Soc., Providence RI, 2002, 467 pages.
D. Gorenstein, Finite groups (2nd ed.), Chelsea, New York, 1980, 527 pages.
B. Huppert and N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, 1985, 454
pages.
[Hup67] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967, 793 pages.
[Suz86] M. Suzuki, Group theory I, II, Grundlehren der Math. Wissenschaften, vol. 247, Springer-
Verlag, Berlin, 1982; 1986, (434 and 621 pages).
1207