10.2. BMO-EXTENSION AND THE HYPERBOLIC METRIC
PROOF. Choose z 1 , z 2 ED with
ri = dist(z1, aD) S dist(z 2 , aD) = r 2
and let t = fo(z 1 , z2). If 1 St< oo, then
hD(z1,z2) s (a+DJD(z1,z2) s (a+b)fo(z1,z2).
If 0 < t < 1, then
(
lz1 - z2I + 1 )
2
Set and s = lz1 - z2I S et/2_1 < l.
r2 r2
Thus z1, z2 ED'= B(z2, r2) CD and
hD(z1, z2) S hD^1 (z1, z2) =log C ~;) St+ t^2 < 2fo(z1, z2).
Inequality (10.2.2) then follows from what was proved above.
139
0
THEOREM 10 .2.3 (Jones [94]). If D has the BMO-extension property with con-
stant a, then
(10.2.4)
for z1, z2 E D where c = c( a).
PROOF. Fix z 1 , z2 E D and let
u(z) = hD(z, z1)
for z E D. Then by Lemma 5.1.2, u is in BMO(D) with
llullsMO(D) s 4.
Next, by hypothesis, u has an extension v in BMO(R^2 ) with
(10.2.5) llvllsMO(R^2 ) Sa llullsMO(D) S 4a.
For j 1 ,2 let Bj = B(zj,rj) where ri = dist(zj,8D). By relabeling if
necessary we may assume that ri S r2. Next let
Bo= B(z2,ro) where ro = lz1 - z2I +r1.
Then
lz - z2I < dist(z2, aD) s lz1 - z2I + dist(z1, aD) = ro
if z E B 2 , and Bj C Bo for j = 1, 2. Hence
lvBj -VBal S 2ae (log:~!;~+ 1) S 4aelog Czi ~ z
2
1+1) + 2ae
by Lemma 5.1.5 and we obtain
luB, - UB 2 I = lvB, -VB 21 S bfo(z1, z2) + b
where b = 4 a e. Finally,