10.3. HYPERBOLIC METRIC AND HYPERBOLIC SEGMENTS
We shall consider the cases where
(10.3.7)
(10.3.8)
separately.
r < max(dist(zj, 8D)),
J=l,2
r ~ max(dist(zj, 8D))
J=l,2
Case where r < supzEi dist(z, 8D)
If r < dist(z1, 8D), then r = 2 lz1 - z2I,
2 lz1 - z2I < dist(z1, 8D) :S 2 dist(z, 8D)
for z on the segment f3 = [z 1 , z 2 ] C D , and
f f 2 4lz1 - z2I
hD(z1,z2) :S J1/D(z)ds :S } 13 dist(z,8D) ds :S dist(z1,8D) :S 2.
Since
hD(z1, z) :S hD(z1, z2)
for z E -y, Lemma 10.3.1 implies that
for z E -y. Thus
(10.3.9)
and
(10.3.10)
e-^4 dist(z 1 , 8D) :S dist(z, 8D) :S e^4 dist(z 1 , 8D)
length("() :S e
4
dist(z^1 , 8D)! dist(~~ aD)
:S e^4 dist(z 1 ,8D)! 2pD(z)ds
= 2e^4 dist(z 1 , 8D) hD(z1, z2) :S 8e^4 lz1 - z2I
length('Y(z 1 ,z)) :S 8e^4 lz1 -z2I :S 4e^4 dist(z1,8D)
:S 4e^8 dist(z, 8D)
141
for z E -y. If r < dist(z 2 , 8D), then we obtain (10.3.9) and (10.3.10) by reversing
the roles of z 1 and z 2 in the above argument. Hence (10.3.7) implies (10.3.5) with
c = 4e^8.
Case where r 2:: supzEi dist(z, 8D)
In this case there exists z 0 E 'Y such that
dist(z 0 , 8D) =sup dist(z, 8D) ~ r.
zE"'f
For j = 1, 2 let mj be the largest integer for which
2mJ dist(zj,8D) :Sr
and let Wj be the first point of -y(zj, z 0 ) with
dist(wj, 8D) = 2mJ dist(zj, 8D)
as we· traverse 'Y from Zj towards zo. Then
(10.3.11) dist(wj, 8D) :Sr< 2 dist(wj, 8D).