10.3. HYPERBOLIC METRIC AND HYPERBOLIC SEGMENTS 143
This is the first inequality. For the second, if z E 'Y( z 1 , w 1 ), then z E 'Y( (k, (k+l) for
some k, 1 _.:::: k _.:::: m 1 , and
k k
length('Y(z 1 , z)) _.:::: Llength('Y((k,(k+ 1 )) _.:::: b Ldist((k,8D)
j=l j=l
= b(2k - 1) dist(z1, 8D) < b dist( (k+i, 8D)
_.:::: beb/^2 dist(z , 8D)
again by (10.3.13) and (10.3.14).
We show next that if dist(w 1 , 8D) _.:::: dist(w2, 8D), then
(10.3.15)
length('/'( w 1 , w2)) _.:::: 2be^2 b dist( w 1 , 8D),
dist(w2, 8D) _.:::: e^2 b dist(z, 8D)
for all z E 'Y( w 1 , w2). We may assume that w 1 =/:. w 2 since otherwise there is nothing
to prove. By hypothesis
r 2". max(dist(zj, 8D)),
J=l,2
where r is as in (10.3.6), and we have the following two possible subcases:
(10.3.16)
(10.3.17)
r =sup dist(z, 8D),
ZE"f
r=2lz1-z2I·
If (10.3.16) holds, set
t _ _le_n_gt_h--,.('Y_(_w_ 1 _, w--,.--- 2 )_)
- dist(w1, aD).
Then
dist(z,8D) _.:::: r < 2dist(w 1 ,8D)
if z E 'Y(w 1 , w 2 ) by (10.3.11) and we can repeat the proof for the first part of
(10.3.14), with w 1 in place of (k and W2 in place of (k+i, to obtain (10.3.15).
Next if (10.3.17) holds, then
lw1 - w2I _.:::: L length('Y(zj, Wj)) + lz1 - z2I
j=l,2
_.:::: b L dist(wj,8D) +r/2
j=l,2
_.:::: 4b dist( W1, aD)
by (10.3.11) and the first part of (10.3.12). Hence
hD(w1, w2) .:::: a]D(w1, w2) .:::: 2a log (di;(~,~~)) _.:::: 2a log 5b < b.
If z E 'Y(w 1 ,w2), then
e-^2 b dist(w 2 , 8D) .:::: dist(z, 8D) .:::: e^2 b dist(w18D)