166 BIBLIOGRAPHY
[89] D. S. Jerison and C. E. Kenig, Boundary behaviour of harmonic functions in non-
tangentially accessible domains. Adv. Math. 46 (1982) 80-147.
[90] F. John, Rotation and strain. Comm. Pure Appl. Math. 14 (1961) 391-413.
[91] F. John, On quasi-isometric mappings, I. Comm. Pure Appl. Math. 21 (1968) 77-110.
[92] F. John, On quasi-isometric mappings, II. Comm. Pure Appl. Math. 22 (1969) 265-278.
[93] F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl.
Math. 14 (1961) 415-426.
[94] P. W. Jones, Extension theorems for BMO. Indiana Univ. Math. J. 29 (1980) 41-66.
[95] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces.
Acta Math. 147 (1981) 71-88.
[96] S. Kallunki and P. Koskela, Exceptional sets for definition of quasiconformality. Amer. J.
Math. 122 (2000) 735-743.
[97] S. Kallunld and P. Koskela, Metric definition of μ,-homeomorphisms. Michigan Math. J. 51
(2003) 141-151.
[98] S. Kallunki and 0 Martio, AGL homeomorphisms and linear dilatation. Proc. Amer. Math.
Soc. 130 (2002) 1073-1078.
[99] R. Kaufman and J.-M. Wu, Distances and the Hardy-Littlewood Property. Complex Var.
Elliptic Equ. 4 (1984) 1-5.
[100] J. A. Kelingos, Boundary correspondence under quasiconformal mappings. Michigan Math.
J. 13 (1966) 235 -249.
[101] K. Kim, Harmonic doubling condition and John disks. Comm. Korean Math. Soc. 10 (1995)
145-153.
[102] K. Kim and N. Langmeyer, Harmonic measure and hyperboic distance in John disks. Math.
Scand. 83 (1998), 283-299.
[103] B. N. Kimel'fel'd, Homogeneous regions on the conformal sphere. Mat. Zametki 8 (1970)
321-328. (Russian)
[104] W. Kraus, Uber den Zusammenhang einiger Charakteristiken eines einfach zusam-
menhangend Bereiches mit der Kreisabbildung. Mitt. Math. Sem. Giessen 2 1 (1932) 1-28.
[105] J. G. Krzyz, Quasicircles and harmonic measure. Ann. Acad. Sci. Fenn. 12 (1987) 19-24.
[106] J. G. Krzyz, Harmonic analysis and boundary correspondence under quasiconformal map-
pings. Ann. Acad. Sci. Fenn. 1 4 (1989) 225-242.
[107] J. G. Krzyz, Quasisymmetric functions and quasihomographies. Ann. Univ. M. Curie-
Sklodowska 47 (1993) 90 -95.
[108] R. Kiihnau, Moglichst konforme Spiegelung an einer Jordankurve. Jber. Deut. Math.-Verein
90 (1988) 90-109.
[109] R. Kiihnau, Moglichst konforme Spiegelung an einer Jordanbogen auf der Zahlenkugel. Com-
plex Analysis, Birkhiiuser Verlag, 1988 , 139-156.
[110] N. Langmeyer, The quasihyperbolic metric, growth, and John domains. Ann. Acad. Sci.
Fenn. 23 (1998) 205-224.
[111] V. Lappalainen, Liph -Extension domains. Ann. Acad. Sci. Fenn. Dissertationes 56 (1985)
56 pp.
[112] M. Lehtinen, On the inner radius of univalency for non-circular domains. Ann. Acad. Sci.
Fenn. 5 (1980) 45-47.
[113] M. Lehtinen, Angles and the inner radius of univalency. Ann. Acad. Sci. Fenn. 11 (1986)
151-165.
[114] 0. Lehto, Domain constants associated with Schwarzian derivative. Comment Math. Helv.
52 (1977) 603-610.
[115] 0. Lehto, Remarks on Nehari's theorem about the Schwarzian derivative and schlicht func-
tions. J. Anal. Math. 36 (1979) 184 -190.
[116] 0. Lehto, Univalent Functions and Teichmuller Spaces. Springer-Verlag, 1987.
[117] 0. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane. Springer-Verlag, 1973.
[118] 0. Lehto, K. I. Virtanen, and J. Viiisiilii, Contributions to the distortion theory of quasi-
conformal mappings. Ann. Acad. Sci. Fenn. 273 (1959) 3-13.
[119] X. Liu and D. Minda, Distortion theorems for Bloch functions. Trans. Amer. Math. Soc.
333 (1992) 325-338.
[120] P. MacManus, Bi-Lipschitz extensions in the plane. J. Anal. Math. 66 (1995) 85-115.
[121] P. MacManus, R. Niikki, and B. Palka, Quasiconformally homogeneous compacta in the
complex plane. Michigan Math. J. 45 (1998) 227 -241.