70 5. CRITERIA FOR EXTENSION
PROOF. If Bo is any disk with center z 0 and Bo c D , then
iuBo - u(zo)I :S: m(~o) l
0
lhD(z, z1) - hD(zo, zi)I dm
:::; m(~o) l
0
hD(z, zo) dm:::; 2
(5.1.3)
by Lemma 4.3.2, whence
(
~) r lu(z) - UBol dm:::; (~) r (lu(z) - u(zo)I + 2) dm:::; 4.
m o }~ m o }~
D
If v E BMO(R^2 ) and if u is the restriction of v to D, then u is in BMO(D)
with
llullBMO(D) :::; llvllBMO(R2)·
The following example shows that the converse is not always true for BMO(D) even
though this is trivially true for the class L^00 (D) in (5.1.1).
EXAMPLE 5.1.4. If u(z) = hD(z, 1) where Dis the half-strip
D={z=x+iy: O<x<oo, IYl<l},
then u is in BMO(D) but u has no extension v in BMO(R^2 ).
Our proof of this depends on the following inequality, which will also be needed
in Section 9.2.
LEMMA 5.1.5. If u is in BMO(D) and if B1, Bo are disks with B 1 C Bo CD,
then
luB, -UBol:::; ~ (1og:~!~~ +1) llullBMO(D)·
PROOF. Suppose first that m(Bo):::; em(B 1 ). Since
{ (u-UB 0 )dm+ { (u-UB 0 )dm= { (u-UB 0 )dm=0,
}Bo\B1 JB, }Bo
we obtain
luB^0 - UB^1 I= I m(~i) l, (u - UB^0 ) dml =I m(~i) lo\B, (u - UB^0 ) dml
and
1 1 r e
luBo - UB, I :S: 2 m(Bi) } Bo lu - UB 0 I dm :S: 2 llullBMO(D)
by our assumption.
Next let k be the smallest integer for which m(Bo) :::; ek m(B 1 ) and choose
disks Bj so that
and
for j = 1, 2, ... , k. Then
k k
luBo - UB, I :S: L luB; - UB;+1 I :S: -f llullBMO(D)
j=l
e ( m(Bo) )
:::; 2 log m(B1) + 1 llullBMO(D)