1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1

98 H. HOFER, HOLOMORPHIC CURVES AND DYNAMICS



  1. I. Ekeland. Une theorie de Morse pour les systemes hamiltoniens convexes.
    Ann. Inst. Henri Poincare, Analyse non lineaires, 1:19-78, 1984.

  2. Y. Eliashberg. Classification of overtwisted contact structures on three mani-
    folds. Inv. Math., pages 623-637, 1989.

  3. Y. Eliashberg. Filling by holomorphic discs and its applications. London Math.
    Society Lecture Notes, pages 45-67, 1991. Series 151.

  4. Y. Eliashberg. Contact 3-manifolds, twenty year since J. Martinet's work. Ann.
    Inst. Fourier, 42:165-192, 1992.

  5. Y Eliashberg. Legendrian and transversal knots in tight contact manifolds. In
    Topological methods in modern mathematics. Publish or Perish, 1993.

  6. Y. Eliashberg. Classification of contact structures on IR^3. Inter. Math. Res.
    Notices, 3:87-91, 1993.

  7. Y. Eliashberg and H. Hofer. A Hamiltonian characterisation of the three-ball.
    1993. to appear P. Hess Memorial Volume, Differential and Integral equations,
    7: 1303-1324, 1994.

  8. Y. Eliashberg, H. Hofer, and D. Salamon. Lagrangian intersections in contact
    geometry. Geometric and Functional Analysis, 5(2):244-269, 1995.

  9. Y. Eliashberg and L. Polterovich. Local lagrangian 2-knots are trivial. Annals
    of Mathematics, 144:61- 76 , 1996.

  10. A. Floer. A relative index for the symplectic action. Comm. Pure and Appl.
    Math., 41:393-407, 1988.

  11. A. Floer. Morse theory for Lagrangian intersection theory. J. Diff. Geom.,
    28:513-54 7, 1988.

  12. A. Floer. The unregularised gradient flow of the symplectic action. Comm.
    Pure Appl. Math., 41:775-813, 1988.

  13. A. Floer. Symplectic fixed points and holomorphic spheres. Comm. Math.
    Physics, 120 :576-6 11 , 1989.

  14. A. Floer. Witten's complex and infinite dimensional Morse theory. J. Diff.
    Geom., 30:207-221, 1989.

  15. A. Floer, Hofer H., and C. Viterbo. The Weinstein conjecture in P x C^1. Math.
    Zeit., 203:355-378, 1989.

  16. J. Franks. Geodesics on S^2 and periodic points of annulus homeomorphisms.
    Invent. Math., 108:403-418, 1992.

  17. F. Tukaya and K. Ono. Arnold conjecture and Gromov-Witten invariants for
    general symplectic manifolds. preprint 1996.

  18. N. Ghoussoub. Duality and perturbation methods in critical point theory. Cam-
    bridge Tracts in Mathematics Vol. 107, 1993.

  19. V. L. Ginzburg. An embedding s^2 n-l ___, IR^2 n, 2n - 1 ~ 7, whose Hamiltonian
    flow has no periodic trajectories. Inter. Math. Research Notices, 2:83-97, 1995.

  20. E. Giroux. Une structure de contact meme tendue est plus ou moins tordue.
    Preprint 1992.

  21. M. Gromov. Pseudoholomorphic curves in symplectic manifolds. Invent. Math.,
    82:307-347, 1985.

  22. M.R. Herman. Exemples de £lots Hamiltoniens dont aucune perturbation en
    topologie C^00 n'a d'orbites periodiques sur un ouvert de surfaces d'energies.
    Comptes-Rendus-de-l'Academie-des-Sciences. Serie-I.-Mathematique, 312 (No.
    13) :989-994, 1991

  23. M. Herman. Private communication.

Free download pdf