1549055384-Symplectic_Geometry_and_Topology__Eliashberg_
jair2018
(jair2018)
#1
BIBLIOGRAPHY
- M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964)
suppl. 13-38.
- N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators,
Grundlehren der Mathematischen Wissenschaften 298, Springer-Verlag, 192.
- P. A. M. Dirac, Principles of quantum mechanics, Oxford Univ. Press.
- S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology
29 (1990), no. 3, 257-315.
- S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Ox-
ford Univ. Press, 1990.
- M. Gromov, Pseudoholomorphic curves in almost complex manifolds, Invent.
Math. 82 (1985), 307-347.
- E. Ionel and T. Parker, The Gromov invariants of Ruan-Tian and Taubes,
Math. Res. Lett. 4 (1997), no. 4, 521-532.
- S. Kobayashi and K. Nomizu, Foundations of differential geometry, John Wiley
and .Sons, 1963 (vol. I), 1969 (vol. II).
- D. Kotschick, P. B. Kronheimer, and T. S. Mrowka, in preparation.
- P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the
projective plane, Math. Res. Letters 1 (1994), 797-808.
- H. B. Lawson Jr. and M-L. Michelson, Spin geometry, Princeton Mathematical
Series 38 , Princeton Univ. Press, 1989.
- D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Univ.
Press, 1995.
- J. Morgan, The Seiberg-Witten equations and applications to the topology of
smooth four-manifolds, Mathematical Notes 44, Princeton Univ. Press, 1996.
- C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res.
Lett. 1 (1994), 809-822.
- C. H. Taubes, More constraints on symplectic forms from the Seiberg-Witten
invariants, Math. Res. Letters 2 (1995), 9-13.
- C. H. Taubes, The Seiberg-Witten and the Gromov invariants, Math. Res. Lett.
2 (1995), 221-238.
- C. H. Taubes, SW ==? Gr: from the Seiberg-Witten equations to pseudoholo-
morphic curves, J. Amer. Math. Soc. 9 (1996), 845-918.
- C. H. Taubes, Counting pseudo-holomorphic submanifolds in dimension 4, J.
Differential Geometry 44 (1996) no. 4, 818-893.
141