1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1
BIBLIOGRAPHY


  1. M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964)
    suppl. 13-38.

  2. N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators,
    Grundlehren der Mathematischen Wissenschaften 298, Springer-Verlag, 192.

  3. P. A. M. Dirac, Principles of quantum mechanics, Oxford Univ. Press.

  4. S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology
    29 (1990), no. 3, 257-315.

  5. S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Ox-
    ford Univ. Press, 1990.

  6. M. Gromov, Pseudoholomorphic curves in almost complex manifolds, Invent.
    Math. 82 (1985), 307-347.

  7. E. Ionel and T. Parker, The Gromov invariants of Ruan-Tian and Taubes,
    Math. Res. Lett. 4 (1997), no. 4, 521-532.

  8. S. Kobayashi and K. Nomizu, Foundations of differential geometry, John Wiley
    and .Sons, 1963 (vol. I), 1969 (vol. II).

  9. D. Kotschick, P. B. Kronheimer, and T. S. Mrowka, in preparation.

  10. P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the
    projective plane, Math. Res. Letters 1 (1994), 797-808.

  11. H. B. Lawson Jr. and M-L. Michelson, Spin geometry, Princeton Mathematical
    Series 38 , Princeton Univ. Press, 1989.

  12. D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Univ.
    Press, 1995.

  13. J. Morgan, The Seiberg-Witten equations and applications to the topology of
    smooth four-manifolds, Mathematical Notes 44, Princeton Univ. Press, 1996.

  14. C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res.
    Lett. 1 (1994), 809-822.

  15. C. H. Taubes, More constraints on symplectic forms from the Seiberg-Witten
    invariants, Math. Res. Letters 2 (1995), 9-13.

  16. C. H. Taubes, The Seiberg-Witten and the Gromov invariants, Math. Res. Lett.
    2 (1995), 221-238.

  17. C. H. Taubes, SW ==? Gr: from the Seiberg-Witten equations to pseudoholo-
    morphic curves, J. Amer. Math. Soc. 9 (1996), 845-918.

  18. C. H. Taubes, Counting pseudo-holomorphic submanifolds in dimension 4, J.
    Differential Geometry 44 (1996) no. 4, 818-893.
    141

Free download pdf