1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1

Bibliography


l. M.F. Atiyah, V .K. Patodi and l.M. Singer, Spectral asymmetry and Riemann-


ian geometry, Math. Proc. Camb. Phil. Soc. 79 (1976), 79-99.


  1. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a
    conjecture of V.I. Arnold, Invent. Math. 73 (1983), 33-49.

  2. S. Donaldson and M. Furuta, Floer homology, in preparation.

  3. S. Dostoglou and D.A. Salamon, Cauchy-Riemann operators, self-duality, and
    the spectral flow, in First European Congress of Mathematics, Volume I, In-
    vited Lectures (Part 1), edited by A. Joseph, F. Mignot, F. Murat, B. Prum,
    R. Rentschler, Birkhauser Verlag, Progress in Mathematics, Vol. 119 , 1994 ,
    pp. 511-545.

  4. S. Dostoglou and D .A. Salamon, Self-dual instantons and holomorphic curves,
    Annals of Mathematics 139 (1994), 581-640.

  5. Y. Eliashberg, Estimates on the number of fixed points of area preserving
    transformations, Syktyvkar University, Preprint, 1979.

  6. A. Floer, Morse theory for Lagrangian intersections, J. Diff. Geom. 28 (1988),
    513-547.

  7. A. Floer, A relative Morse index for the symplectic action, Comm. Pure Appl.
    Math. 41 (1988), 393 - 407.

  8. A. Floer, The unregularized gradient flow of the symplectic action, Comm.
    Pure Appl. Math. 41 (1988), 775-813.

  9. A. Floer, Wittens complex and infinite dimensional Morse theory, J. Diff.
    Geom. 30 (1989), 207-221.

  10. A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math.
    Phys. 120 (1989), 575-611.

  11. A. Floer and H. Hofer, Coherent orientations for periodic orbit problems in
    symplectic geometry, Math. Zeit. 212 (1993), 13-38.

  12. A. Floer, H. Hofer, and D. Salamon, Transversality in elliptic Morse theory for
    the symplectic action, Duke Math. Journal 80 (1996), 251-292.

  13. F. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariants for
    general symplectic manifolds, Preprint, June 1996.

  14. W. Fulton and R. MacPherson, A compactification of confir?;uration space,
    Annals of Mathematics 139 (1994), 183-225.

  15. A. Givental, Equivariant, Gromov-Witten invariants, UCB, Preprint, 1996.


227
Free download pdf