1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1

264 A. GIVENTAL, A TUTORIAL ON QUANTUM COHOMOLOGY


16. A. Givental & B. Kim. Quantum cohomology of flag manifolds and Toda
lattices. Commun. Math. Phys. 168 (1995), 609 - 641.


  1. M. Gromov. Pseudo-holomorphic curves in symplectic manifolds. Invent.
    Math. 82 (1985), 307 - 347.

  2. B. Kim. On equivariant quantum cohomology. IMRN (1996), No. 17, 841 -
    851.

  3. B. Kim. Quantum cohomology of flag manifolds G / B and quantum Toda lat-
    tices. Preprint, 1996.

  4. B. Kim. Quantum Lefschetz principle. Preprint, 1997.

  5. M. Kontsevich. Enumeration of rational curves via toric actions. In "The
    moduli space of curves", R. Dijkgraaf, C. Faber, G. van der Geer (Eds.),
    Progr. in Math. 129 , Birkhiiuser, Boston, 1995 , 335 - 368.

  6. B. Kostant. On Whittaker vectors and representation theory. Invent. Math.
    48 (1978), 101 - 184.

  7. J. Li & G. Tian. Virtual Moduli cycles and Gromov-Witten invariants in
    general symplectic manifolds. Preprint, alg-geom/9608032.

  8. Y. Ruan. Virtual neighborhoods and pseudo-holomorphic curves. Preprint,
    1996, 83 pp.

  9. M. Semenov-Tian-Shansky. Quantization of Toda lattices. In "Dynamical sys-
    tems 7", V. Arnold, S. Novikov (Eds.), Encyclopaedia of Math. Sci. 16,
    Springer-Verlag.

  10. E. Witten. Supersymmetry and Morse theory. J. Diff. Geom. 117 (1982), 353











  1. E. Witten. Two-dimensional gravity and intersection theory on moduli space.
    Surveys in Diff. Geom. 1 (1991), 243 - 310.

Free download pdf