1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1

\


BIBLIOGRAPHY 429


  1. Simo, J.C. and L. VuQuoc [1988b] The role of nonlinear theories in the dy-
    namics of fast rotating flexible structures. Journal of Sound and Vibration
    119, 487-508.

  2. Simo, J.C. and K.K. Wong [1989] Unconditionally stable algorithms for the
    orthogonal group that exactly preserve energy and momentum, Int. J. Num.
    Meth. Eng. 31, 19-52, addendum, 33, 1321-1323, 1992.

  3. Sjamaar, R. and E. Lerman [1991] Stratified symplectic spaces and reduction,
    Ann. of Math. 134, 375-422.

  4. Smale, S. [1970] Topology and Mechanics, Inv. Math. 10, 305 -3 31 , 11 , 45-64.

  5. Sreenath, N., Y.G. Oh, P.S. Krishnaprasad, and J.E. Marsden [1988] The
    dynamics of coupled planar rigid bodies. Part 1: Reduction, equilibria and
    stability, Dyn. and Stab. of Systems 3, 25-49.

  6. Sternberg, S. [1977] Minimal coupling and the symplectic mechanics of a
    classical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci.
    7 4, 5253-5254.

  7. Stofer, D.M. [1987] Some Geometric and Numerical Methods for Perturbed
    Integrable Systems. Thesis, Zurich.

  8. Sudarshan, E.C.G. and N. Mukunda [1974] Classical Mechanics: A Modern
    Perspective. Wiley, New York, 1974; Second Edition, Krieber, Melbourne-
    Florida, 1983.

  9. Tilbury, D., R. Murray, and S. Sastry [1993] Trajectory generation for the N-
    trailer problem using Goursat normal form. Proc. IEEE Control and Decision
    Conj, San Antonio, Dec. 1993.

  10. Touma, J. and J. Wisdom [1994] Lie-Poisson integrators for rigid body dy-
    namics in the solar system. Astra. J. 107, 1189.

  11. Touma, J. and J. Wisdom [1994] Evolution of the Earth-Moon system. Astra.
    J. 108, 1943.

  12. Vanhaecke, P. [1996] Integrable Systems in the Realm of Algebraic Geometry,
    Springer Lecture Notes in Mathematics, 1638.

  13. Verlet, L. [1967]. Computer experiments on classical fluids. Phys. Rev, 159 ,
    98-103.

  14. Vershik, A.M. and V. Ya Gershkovich [1988] Non-holonomic Riemannian
    manifolds, in Dynamical Systems 7, Mathematical Encyclopaedia series 16
    (in Russian), MIR pub., translation to be pub. by Springer.

  15. Veselov, A.P. [1988] Integrable discrete-time systems and difference operators.
    Funct. An. and Appl. 22 , 83-94.

  16. Veselov, A .P. [1991] Integrable Lagrangian correspondences and the factor-
    ization of matrix polynomials. Funct. An. and Appl. 25, 112-123.

  17. Vierkandt, A. [1892] Uber gleitende und rollende Bewegung. Monatshefte der


Math. und Phys. III, 31-54.


  1. Vinogradov, A.M. and B.A. Kupershmidt [1977] The structures of Hamilton-
    ian mechanics. Russ. Math. Surv. 32 , 177-243.

Free download pdf