1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1
CONTENTS

Motivation
Seiberg-Witten and Pseudoholomorphic Curves
Definition of the Gromov Invariant

Bibliography


Dietmar Salamon, Lectures on Floer Homology
Introduction


Lecture 1. Symplectic Fixed Points and Morse Theory
The Arnold Conjecture
The Monotonicity Condition
The Morse-Smale-Witten Complex
Symplectic Action
Connecting Orbits
Moduli Spaces


Lecture 2. Fredholm Theory
Fredholm Operators
The Linearized Operator
LP-Estimates
The Conley-Zehnder Index
The Spectral Flow
Transversali ty
Exponential Convergence


Lecture 3. Floer Homology
Compactness
Floer Homology
Floer's Gluing Theorem
Invariance of Floer Homology
A Natural Isomorphism
Calabi-Yau Manifolds
N ovikov Rings
Floer Homology Revisited

Lecture 4. Gromov Compactness and Stable Maps
Bubbling
Soft Rescaling
Stable Maps
Deligne-Mumford Compactification


Lecture 5. Multi-Valued Perturbations
J-Holomorphic Spheres with Negative Chern Number
Multi-valued Perturbations
Local Slices
Branched Moduli Spaces
Perturbations and Stable Maps
Perturbations and Marked Points
Perturbations and Stable Maps
Compatibility


ix

136
136
137

141

143
145

147
147
149
150
154
155
157

159
159
160
161
165
166
168
170

173
173
176
179
181
184
185
186
187

189
189
191
193
199

205
205
207
209
212
218
219
219
220
Free download pdf