Difference Green's function
we arrive at
(22)
By the same token,
1
Go:v(x,~) < -.
C1
205
Let v(x,~) = G 0 (x,~) - G(x,~). The equations for Go and G imply
that
Aa v(x, ~) = -d(x) Ga(x, ~), v(O,~) = v(l,~) = 0.
We can calculate the left difference derivative of both sides of this equation
with respect to ~, whose use permits us to establish for w( x, ~) = V[
Axw(x,~) = (a(x)w;;(J:,~))x· -d(x)w(x,~) = -d(x)Go[(x,~),
w(0,~)=0, w(l,~)=0.
By the lemma from Chapter 1, Section 1,
(23)
1
rnax x I w(x, ~)I::; max x I Gof(x, ~)I::; -c ·
1
Using estimates (22) and (23) behind, we derive frorn the obvious inequality
IG[(x,~)I < IGo[(x,01+ jw(x,~)I
the desired estimate ( 20).
Theorem For a solution of problem (6)-(7) the estimates a.re valid:
N-1
(24) 2= hips
s=z
(25)
When 1P( x) happens to be of the form lp = T/x + lp*, a solution of problem
( 6 )-(7) satisfies the estimate
(26)
where f-li = I:t-::\ h 1P'k for i = 2, 3 ... , N and f-li = 0.