Higher-accuracy schemes
We will prove the indicated properties.
1) Property 1) follows directly from problem staternent (5 )-( 6).
2) Taking into account (5) and (6), we have for L = L(p,q)
= -v;(xi+i) + v~(xi_ 1 ).
- Applying Green's formula on the segment [xi-i, xi] yields
= ~ (v;)'(xi) v~(xi) - ~ (v;)'(x;) v;(x;_ 1 ) + v~(x;_ 1 ).
P; P;
Upon substituting here the relations
Xi
-(v;)'(x;)^1. = 1+ J
Pi
q(x) v; (x) dx,
x;+1
- 1 ( V,: 2 )'( X; ) = -1 -
Pi
j q(x) v;(x) dx
we establish property 3).
x· l
4) Having stipulated the conditions
the function v;+^1 ( x) does follow
x;+1
0 = j ( v;+^1 L v; - v; L v;+^1 ) dx
xi
1 dvi+1 1 I = 1
p dx x=x,
209