218 Homogeneous Difference Schemes
The function u( x) is linearly interpolated on each of the segments [x;_ 1 , x;]
and [ x; , X;+ 1 ], so that
u·+(x-x·)u z z x )z ·
u(x) ~ {
for
u; + (x - xi) ux,i for
which simplifies the huge job done with the integrals
"'i+1 "'i+1 ~·i+1
;· wdx ;· ku' dx ~ llx i
J
. ' k(x) dx,
x· 1 xz Xi
Xi Xi
J
wdx ~ Ux i ;· k(x)dx,
'
Xi-I Xi-I
x· Xi
J
1
qu(i - x;_ 1 ) di~ -u; j q(i) (i - xi_ 1 ) di
:Ci-I
Xi
+ ux,i j q(i) (x; - i) (t - x;_ 1 ) di,
"'i+1
j q(i) (x;+ 1 - i) di
x;+1
+ ux,i j q(i) (x;+ 1 - i) (i - x;) di.
x·
'
Substituting the resulting expressions into identities (10)-(11) and sub-
tracting the second identity from the first one, we arrive at the difference