1549301742-The_Theory_of_Difference_Schemes__Samarskii

(jair2018) #1
218 Homogeneous Difference Schemes

The function u( x) is linearly interpolated on each of the segments [x;_ 1 , x;]
and [ x; , X;+ 1 ], so that

u·+(x-x·)u z z x )z ·
u(x) ~ {

for

u; + (x - xi) ux,i for


which simplifies the huge job done with the integrals

"'i+1 "'i+1 ~·i+1
;· wdx ;· ku' dx ~ llx i
J

. ' k(x) dx,
x· 1 xz Xi


Xi Xi

J


wdx ~ Ux i ;· k(x)dx,
'
Xi-I Xi-I

x· Xi
J

1
qu(i - x;_ 1 ) di~ -u; j q(i) (i - xi_ 1 ) di
:Ci-I

Xi
+ ux,i j q(i) (x; - i) (t - x;_ 1 ) di,

"'i+1
j q(i) (x;+ 1 - i) di

x;+1
+ ux,i j q(i) (x;+ 1 - i) (i - x;) di.

'

Substituting the resulting expressions into identities (10)-(11) and sub-
tracting the second identity from the first one, we arrive at the difference

Free download pdf