222 Hmnogeneous Difference Schemes
The Ritz inethod proves to be useful in studying the problem
(24) (ku')' - q1l = -f(x), 0 < x < 1, 1l ( 0) = 0' u ( 1) = 0.
Other ideas are connected with the function
{
0,
77(.s)= l+s,
1 - s
'
(25)
s<-l, s>l,
-l<s<O,
O<s<l,
which guides the choice of the functions
(26)
where xi= ih, i = 1, 2, ... , N-l, is a node of the grid wh ={xi= ih, z =
0, 1, ... , N, hN = 1}. It follows from the fo1·egoing that
(^0) for x < xi-l and x > X;+ 1 ,
X - X· z-1
(25') 7); ( x) = for < x <xi,
h xi-1
Xi+1 - X
for Xi < X < Xi+l '
h
and, hence,
0
d77i^1
(27) -
dx h
Upon substituting
1
h
for x < xi-1 and
for Xi-l < X < X;,
for xi < x < x i+ 1.
A 11 = - -d ( k -du) + q1l
dx dx
X > Xi+1 '
into (22) we get
1
(28)
J (
d77; d77· )
CX;j = k dx d~ + q 17; 7lj dx ,
0
l
/3; = J f(x) 7J;(x) dx.
0